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19•ABSTRACT 4
"p-This report describes 4he- emuls of-two-yerresearch -project . continuum modelii

and vibration control of flexible structures with application to active control of vibrations
in large space structures. A comprehensive methodology is discussed for the construction
of effecti g (lde&4 iodelr for.J gomposite structures consisting of various flexible
members (e.g. beams, trusses, etc.) and rigid body elemen Since our ultimate concern
is the active, feedback control of such systems, we fndt convenient to concentrate on
frequeny~ damain modeling. We start at the component level and sh"9 a systematic
procedurefor computing the irrational transfer functions, Then by standard
transform methods a complete hybrid model is developed. The methods were coded in a
computer algebra system (SMP was used) which automated the mbdel building process
and produced Fortran code for numerical evaluation of the frequency responses.j

Under certain conditions the dynamics of such large, low mass stru tr, having a
regular infrastructure, can be modeled by the dyna xiks of continuua; e.g., trusses can
be modeled as elastic beams. We demonstrate hov6effective continuum models of lattice
structures with regular infrastructure can be obtained by a systematic procedure based on
an asymptotic analysis of multiple scales called homogenization., This method is applied
to several examples and i-ietwn-ttaccurate computationrof the required parameters
of such continuum models issomewhat more subtle than merely averaging over lattice
cells Certain "corrector" formulae, required for such computations, are derived for several
ex! les. In addition the nature of the process of combining homogenization and optimal
9Dntrol is discussed in detail.
K For the computation of eistributed parameter control~we on-entrate6n %n optimal
frequency domain methodi based on solving an associated WienerriHopf problem. The
method'whch w aid1y-Jon-D-avis-s'trploys effective numerical algorithms (e.g.
FFT, etc.) to compute a certain spectral factorization of a possibly matrixvalued (in the
multiple control case) Hermittian, positivedefinite transform by sampling the frequency
response. The control laws considered in this report take the form of distributed state
feedback with respect to a natural!y defined, distributed state-Apace of functions over the
spatial domain of the structure. 4.--

Several examples are considered in detail and certain numerical sensitivities are noted
for the method. The relationship between this method for distributed control and more
standard methods based on finite-dimensional, reduced-order modeling is discussed. In this
context the distributed parameter method raises several basic questions with respect to
continuum modeling which never arise when finite-dimensional approximations are used
from the outset. In particular, as discussed by Gibson, the nature of various standard
models for structural damping is deemed crucial.

Our ultimate goal in this project was to demonstrate both effective methods for con-
tinuum modeling of low mass density structures and computation of stabilizing, optimal
control laws for these systems. Examples indicate that stabilization and control of essen-
tially all controllable modes of the given system will be difficult to achieve in practice using
a finite array of sensors. However, it is shown that, under certain conditions, an aribitrary,
finite number of modes can be controlled using these methods without destabilizing the
remaining uncontrolled modes.
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Executive Summary

In this project we considered modeling the flexible dynamics of large space structures
for the purpose of designing active control laws for the suppression of vibrations. We
focus on distributed parameter models which capture the spatial dependency of the in-
teraction between control forces, load forces (on board systems), exogenous distrubances,
and sensors. Standard methods for such analysis used throughout the aerospace industry
are based on finite-element analysis. In contrast in this project we focused on the use of
continuum models for the elastic response of certain mechanical components like beams,
cables, membranes.- A composite model for a space structure may consist of several of
these elastic elements interacting at their boundaries with rigid body elements. Effective
continuum models for periodic truss structures may also be used to simplify the model
construction. We have employed an asymptotic method of mutliple time and spatial scales
called homogenization to compute such continuum models for a variety of truss structures
under several assumptions.

Control for distributed systems centers on the definition of a distributed state for the
mechanical system. A method for computation of a distributed feedback control gain is
developed in detail including numerical algorithms and considerable testing is included.

In the first section we provide a technical introduction to the problem of control of
distributed parameter systems arising from elastic mechanical structures. The second
section contains a detailed discussion of a relatively new approach to computing distributed
control gains for such systems. The method is based on a classical Wiener-Hopf problem
and involves considerable numerical computations. We provide comparison with standard
modal and finite-element methods and consider the practical limitation of the approach.

The third section contains a discussion of frequency response computations for con-
tinuum models arising from elastic dynamics modeled by partial differential equations.
Composite structures are also considered in this section and it is shown that standard
computations based on Laplace transforms can be used effectively to computed the re-
quired transform for rather complex interconnections between elastic and rigid compo-
nents. In section four we consider homogenization of regular structures. The method
is demonstrated on a simple one dimensional example which shows the existence of cer-
tamn 'corrector' formulae which are important in computation of such models. A major
question is the effectiveness of control laws developed for the resulting continuum model
when applied to the finite structural lattice. In this section this question of combined
homogenization and control is considered in some detail.

Finally section three contains several examples which illustrate the combined modeling
and control methods proposed.

The problem of deriving complete transfer function representations of the structural
models including transient response characterization by Green' functions is completely
solved in this work. We show that the analysis of certain types structures-beams with
one or more degrees of freedom-can be "automated" (though this is far from trivial)
using a computer-based, symbolic manipulation system. The major question remains the

Lp
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numerical evaluation of these functions. It is possible to use a variety of expansions and
alternate algebraic representations for the functions for various ranges of their domains.5This analysis can be supported with symbolic computation. Also, it appears likely that
a truely functional methodology will require capability for rational approximation and

~ interpolation of these functions. These issues limit the practical application of the method
in question. Computer code for the symbolic and numerical algorithms are contained in
the appendices.
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1 Introduction

It is now generally accepted that large, low mass density lattice structures will be essential
for several near term space applications. Moreover, it is apparent that active control of
structural vibrations will be necessary to enhance their stiffness and damping properties.
In this report we consider the construction of effective mathematical models for elastic
dynamics of space structures with the objective of designing active control laws for these
systems.

The success of active control for such structures will hindge to some extent on the
ability of a control law to react to vibratory responses which may be initially localized
before they propagate throughout a structure. This leads naturally to questions of how
to implement active control so as to distribute the control effort spatially as it is needed.
We argue that well known methods exist for the control of distributed parameter systems
and can be effectively applied if continuum models for the candidate space structures can
be computed. The nature of the required models is however quite different from the more
standard finite element models which are popular for large structural analysis problems
throughout the aerospace industry.

We begin in this section with a review of continuum models for active structural con-

study we have employed one method for the computation of a distributed control law

for continuum dynamics based on a numerical procedure for spectral factoriztion. This
method requires the computation of certain representation for an underlying state-space
model for the structure to be controlled. In a later section we discuss the theoretical basis
for computing effective distributed parameter models for large truss structures with ran-
dom lattice infastructure. The method which involves "homogenization" (an asymptotic
analysis of multiple scales) leads to the well known Timeshenko model for beam dynamics.
The analysis provides formulae for the effective beam parameters which are quite different
than have been suggested by other averaging schemes [1,2,3].

Comprehensive models of flexible spacecraft dynamics will involve systems with fairly
complex interconnections of lumped and distributed subsystems, and therefore, we intend
to construct the overall models by first developing subsystem models and then combining
them according to the required interconnection rules. These interconnections lead to basic
questions of causality and well-posedness of certain standard models for beams. These
questions are crucial to the computation of hybrid, state-space modeling of an integrated
space platform.

Throughout this effort we have focused on the potential for automatic and computer-
aided computation of the models by a combination of modern computer algebra [41 (sym-

% bolic manipulation) and numerical methods. In our efforts we have used the program SM?
[5,6]. We will review the progress in using SM? for the computation of irrational transfer
function models for hybrid problems in a later section.

WI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . N.~.r *..~.*rv A~Wv~.*-~- **W
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1.1 Generic Models for Structural Dynamics

In this section, we consider a generic model for elastic dynamics of structures from the
point of view of continuum modeling. We will summarize the construction of a state space
model and introduce a typical control problem for vibration suppression. We highlight the
modal approximations which are popular for these problems and proceed to demonstrate
an effective alternate technique for model construction and control computation based
on the semi-group property [8] of a state space model. Effectively, modeling and control
law computation can proceed in the frequency domain, based on transfer function meth-
ods, permitting the direct computation of a resolvent operator. We focus on the class of
structural control problems for which the question of control of propagation of wave-like
disturbances is important. In this framework, we can present the semi-group theory by
concrete computations of practical interest to structural and control system engineers.

A popular continuum model for a flexible structure [9] is described by a system of
partial differential equations (PDE)

m 2(z) w + Do at + Aow(t, z) = F(t,,) (1)at2  at
where w(t, z) is an N-vector of displacements of a structure 11 with respect to some equi-
librium for 0I is a bounded, open set in !RN I. The (vector) z E n is a coordinate in n.
We assume the boundary a is smooth. The mass density m(z) is positive definite and
bounded on 80. The damping term Doaw/at models both (asymmetric) gyroscopic and
(symmetric) structural damping effects. The internal restoring force A0w is generated by
a time-invariant, differential operator A0 for the structure. For most common structural
models, A0 is an unbounded, differential operator with domain D(Ao) consisting of cer-
tain smooth functions satisfying appropriate boundary conditions on an. Thus, for these
problems, D(A0 ) is typically dense in the Hilbert space No - L2 (fl) endowed with its nat-
ural inner product (X, y)o = fn zT(z) y (z) dz. Often (but not always), the spectrum of Ao,
o(Ao), consists of dicrete eigenvalues with associated eigenfunctions which constitute a
basis for £I2(0)2 .

The applied force distribution F(t, z) can be thought of as consisting of three compo-
nents

F(t,z) = Fd(t,z) + F(t,z) + F.(t,z) (2)
where Fd is N-vector of exogenous disturbances (possibly forces and torques), F, is a
continuous, distributed controlled force field (an available option in only some special
applications), and F represents controlled forces due to localized actuation;

F. (t,z) = Zb(z)uj(t) = Bou(t). (3)
j=i

The actuator influence functions b, (z) are highly localized in n and can be approximated
by Dirac delta functions. We assume that a finite number p of measurements can be made

'R denotes the real numbers.

X is the space of functions such that f E C,,(n) then (fn If(w)l'dw)1/2

e
• 

•
A'

, 'I' . ', ' .'=' '',,%' ,, ,-i,-' -, '- 'w'.,'. '. .% ,. " ... '. ... ." ' . -.. " - • ". .. *." . %.. -'..
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y(t) = Cow + Co'a (4)

where y(t) is a p-vector. The operators Bo : BZR" --+ MO, CO : Ro --+ BP, and C6 : No --+ P
are bounded.

The standard vibration control problem for this model is to find the controls u (t), j =
1,..., k (we ignore the possibility of F,) given the observations y(t) to maintain the system
state, e.g.,

44 (w(t, z))
z(t,z) = ti(t,Z))

as close to its equilibrium state as possible.

1.1.1 State Space Models

The choice of state space given by (5) is often attractive for models in the generic form
(1). (We will discuss later that attractive alternate state space models can arise in hybrid
constructions.) A natural assumption for structural problems is that A0 is symmetric with
compact resolvent and discrete (real) spectrum which is bounded from below 19). The

x

state (5) can then be considered as an element of a Hilbert space N = D(AJ) x No0 with
the energy norm

IIXll = (w, Aow)o + (mtbi,it)o (6)
where the first term represents potential energy and the second term is kinetic energy.
Thus an (abstract) state space model can be written

, (t,z) = Az(t,z) + Bu(t) (7)

y(t) = Cz(t,z)

where
A= [ 0 1 B 0 ] =[CoC0]. (8)';.'-Ao -Do Bo

For the elastic dynamics of space structures, there is always some (possibly small) damping
Do appearing in (1) which causes A to be dissipative. Thus the criteria of the Hille-Yoshida-
Phillips theorem [7] are satisfied and A generates a Co-semigroup with an operator which
we write suggestively as eAt. Moreover, such models are 'hyperbolic' [9] in the sense that
the semigroup is a contraction, i.e., IleAth1 < 1 and all but the zero frequency poles are
only slightly damped; hheCtAl <_ e- 6' for some small 6 > 0. We remark that some popular
models for structural elements such as beams with material damping may not fit in this

(framework [10,82]. However, this framework includes models appropriate for considerations
of wave-like dynamics which propagate causally in the spatial domain. For such models,
the question of how to compute controls u(t) and system response z(t) focuses on the
so-called mild solution of (7);

.(t,z) = eAt(O, Z) + e' A(t- )Bu(o)d,. (9)
fo
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timal regulator problem which is readily solved by a linear state feedback which minimizes
the performance index (parametrized by a real scalor e > 0)

J(U) = L (IIyIl2 + EIIuII 2)dt (10)

where 11 is the Euclidean norm on the appropriate finite dimensional space. This is the
generic control problem surveyed in Balas [11]. In this paper, we will concentrate on the
construction of state space models and computational aspects of equations of the form (1)
and of optimal (discrete) controls ui(t) appearing in (3).

Various methods are available for approximation of the system (7) [12,13]. One popular
method is based on a modal (eigen-) expansion of A which generates a sequence of finite
dimensional subspaces Mk C ,k = 1,2,..., where )Ik = span{j, j = 1,... ,k} and the
- (z) are eigenfunctions (or mode shapes) for A [10,14]. Based on this approximation, a
sequence of finite dimensional models for (5) can be generated;

- (k) X(k) (t) + (k)u~j (U=A + (B1

Using a truncated model (11) with k finite and the performance index J(u) projected
onto the (finite dimensional) space )k, one can solve the associated optimal control problem
for the first k modes of A. This is a classical approach and encompasses Ritz-Galerkin
methods [10] as well as spline methods [12,13]. However, as noted in Bales [11] in all
but a few special cases, the control law when applied to the system (5) will excite higher
order modes. The inherent robustness and stability properties as well as the degree of
suboptimality of control laws based on such truncated modal approximations has received
a great deal of attention in both the engineering and mathematics literature [9,11]. Various
alternate approaches are available which deal directly with infinite dimensional control
problem given by (10) and (9)-at least abstractly (cf. Russell [15]). One method suggested
by Davis [16,17] offers the advantage of a computational procedure for approximating the
true optimal control in terms of the required control bandwidth. The method is based on
an extension of a Weiner-Hopf solution [17] for the abstract control problem.

1.1.2 Wiener-Hopf Control

In the context of the regulator control problem given by the minimization of (10) subject
to the infinite dimensional model (7), spectral factorization can be seen to provide an
alternate solution [18] to a Riccati operator equation. In a series of papers, J. Davis and
his students [16,17] have explored the application of spectral factorization for control design
of a class of distributed parameter models for long trains with multiple locomotives. Also
in Avramovic, et al. [19] considerations for application of these results to flexible structures
were given. The details of this method are discussed in Section 2; however, in this section,
we will summarize the relevant results and highlight the significance for modeling of flexible
structures.

Taking Laplace transforms in (7) allows one to write (at least formally)

V(a,z) = CR(a;A)x(O,z) + CR(s;A)B (s). (12)

F, ... 1
:i ' /,,',,, .',.' .', ". %',%,, ,,. ,**'. .. . .. . . . ." - ' .... - *-' -''*'.$. *.

.



SEI-TR-86-14 6The transfer function is G(a) = CR(s; A)B where R(s; A) is the resolvent operator for A,

R(9; A) : M --* p(A) C M , where p(A) is the resolvent set (or compliment to the spectrum
Dof A).

The optimal control law which minimizes (10) subject to (7) consists of (linear) state
. feedback

u(t) = -B'Kx(t,z) 
(13)

where B" is the formal adjoint of B in M. We remark that B'K is an (linear) integral
operator on X which can be computed exactly without recourse to an infinite dimensional
Riccati operator equation via the formula [17]

EBK = [F'(iw)]'G(iw;A)CR(iw;A)dW, (14)

where F(s) is the unique, causal spectral factor of

I + GT(-s)G(s) = F(s)FT(-s). (15)

For the infinite dimensional system (7), the transfer functions G(s), F(s) are irrational and
F(s) (resp. FT(-s)) is analytic for We a > 0 (resp. We s < 0). Computational algorithms
for (15) are given in Davis [17] and [42] where a numerical algorithm is given.

In this framework, the question of modeling of flexible structures for the design of
feedback control for suppression of (linear) vibrations centers on computation of: (i) the
irrational transfer function G(8), and (ii) the resolvent R(s; A). Then spectral factorization
in (15) is performed using the Davis algorithm [17] and a numerical approximation to (14)

6e, can be obtained which is valid in the frequency bandwidth of the desired control action.
We remark that although all computations are in the frequency domain, the resulting
control law is a linear, distributed state feedback.

qIn this report we start in Section 2 with a detailed discussion of Wiener-Hopf method
for computing distributed state feedback control. A numerical algorithm is presented
and practical aspects of the method are considered. In Section 3 we provide a detailed
discussion of frequency response calculations and modeling of hybrid structures consisting
of distributed and lumped elements. In many cases of practical interest large repetitive
truss structures can be effectively modeled as continua. Section 4 provides details of a

Vmethod called homogenization and its application to this issue. New results are provided
on the problem of control design based on the homogenized effective continuum model.
Finally in Section 5 several examples of modeling and control computations are given.
Appendices include computer code generated as part of this project and a short discussion
of algorithms.

I.!
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2 Wlener-Hopf Methods for Computation of Opti-

mal, State-Feedback Control

The connections between least squares optimization, spectral factorization, and algebraic
Riccati equations have been considered important in control theory for many years. (See
e.g., Anderson [20], Brockett [18], Willems [21], Helton [22], and the references therein).
To see how the connection arises, consider the standard, finite-dimensional, infinite time,
quadratic regulator (LQR) problem:

min f0 DIu(t)1I 2 + Ily(t)II2dt (16)~uEU~d -.

subject to the linear, time-invariant system model

i(t) = Ax(t) + Bu(t), x(o) = xo (17)

9 . and controlled output
y(t) = Cz(t), t > 0. (18)

The transfer function relating the Laplace transform of the input vector es(s) to the output
vector D(s) is G(s) = C[sI - A]-'B. The optimal control is known to be a linear state
feedback u(t) = -Koptz(t) = -BTPX(t) where P is the unique, positive definite symmetric
solution to algebraic (matrix) Riccati equation,

PA + ATp _ PBBP + CTC = 0. (19)

Standard algebraic manipulations based on (16)-(19) provide the spectral factorization
relation

P [I + K.,(-I- A)-'B]T[I + K.,,(aI,- A)-'BI

= + T(-. - A )-CTC(,I - A)-'B. (20)

123, pp. 68] which we rewrite

H(s) = I + GT (-s)G(s) = F T (-s)F(a) (21)

where F(s) = I + K,,t[sI - AI-'B is the causal spectral factor of H(s).
An explicit integral equation can be derived for the optimal, state feedback under the

additional assumption that the spectrum of the operator A in (17) is contained the open,
left half-plane (C.).

Theorem 1 Given the optimal linear regulator problem as defined in (16)-(18) the opti-
mal feedback gain (if it exists) can be computed as

K = _ I IF*(i,,)I-' C*(iw)CR(iw, A)dw. (22)

under the assumption that A is a stable (matrix) operator.

% ., .~- *~***~* ~ ~ .> ~~. % V.-%~ ~ %.j, \~ % .V 'V A. %%~ eLI
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In (22) we use the notation F*(iw) = FT(-iw) and R(iw; A) = [iwI - A]-' the (matrix)
Sresolvent for A. One paradigm for computing LQR type control laws for distributed

parameter systems is based on extending this computation (rather than the usual approach
of finite element modeling followed by matrix computations). This requires the spectral
factorization of H(s) which may be rational even though the system is infinite dimensional.
This will happen typically when "modal" control is the objective defined in (16); i.e., the
operator C maps to a finite dimensional modal subspace (cf. Section 2.3 for details). The
resolvent arising in (22) can be computed from a Green's function for the problem. In
Section 3 we provide more details.

Proof of Theorem: From standard results [18] the optimal cQntrol (if it exists) will
stabilize the closed loop system so that o(A - BKpt) _ C_ where C_ is the open left half
of complex plane. Construct a closed rectifiable contour r in the complex plane consistingrof a relatively large portion of the iw-axis and a semicircular portion in the left half plane
such that r encircles o(A - BK.,,) in the positive sense. Let A, = A - BK.M. Then

27r f [,]- ' da 1 . (23)

By assumption o(-AT) is contained in C+ and

_6,[sI + AT] 0 (24)
From (19) we write !fa+ T]ds0.()

F ATP + PA. = -CTC. (25)
This leads to the relation

P(aI - A.)' + (-sI - AT)-P = (-.1 - AT) CTC(eI- - A)'. (26)

Now integrate (26) on r and use (23) and (24) to get
= r fi(-,I - Ar)-lCTC(,I- A8)-',. 27

Since the optimal gain is K,,t = BTp = [PB]T we get

K ,t = 1 f B (,I - A,) -CTC(, - AT)-ld. (28)

Now from (20) and (21) we get that

C(sI - A)-'B = C(,I - A)-'B [I + K.,,(aI - A)-'B] -  (29)

and therefore
C(aI - A,)-'B = G()F-'(a).

Thus we can write

Kopf F-T 8CS
2.,, r -(o) ( - - A)-'ds. (30)

Finally (22) is determined by substituting a = iw under the observation that G(iw) . 0
a -tOO.
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For (22) to hold when G(s) is irrational we must consider some limitation of the spectral
properties of the associated infinite-dimensional operator A. Consideration for the compu-
tation of the Riccati operator P by the integral formula (22) suggests that the spectrum of
A must consist of a countably infinite set of eigenvalues so that certain path integrals can
be computed. The spectra o(A.) and o(A) must be separated by the imaginary axis (in-
cluding the point at infinity). Also, the observation that G(iw) -- 0 as w -- oo for rational
functions must be replaced by a similar assumption which further restricts the class of ir-
rational transfer functions [24]. As it turns out the usual assumptions used in constructing
continuum models for mechanical structures serve to restrict the resulting transfer func-
tions appropriately [51,271. However, such transfer functions cannot be computed reliably
from finite element models.

Effectively these additional assumptions will be guaranteed by the class of transfer
functions for which spectral factorization can be performed. We will consider spectral fac-
torization for distributed systems next. More importantly with the usual assumptions used
in constructing continuum models for mechanical structures it appears that the resulting
transfer functions will have the appropriate properties. However, in this study we have
encountered much confusion in the literature. As discussed in the introduction a major
goal of this study was to provide a consistent method for model construction leading to
an appropriate class of transfer functions for models which are both well-posed and have
appropriate spectral properties. In the next section we delineate the specific class of trans-
fer functions for which spectral factorization can be computed efficiently by a numerical
algorithm. We indicate the basis for the algorithm and discuss the implications of sam-
pling and interpolation of the spectral factor. Finally we discuss the relationship between
rational approximation and modal control.

2.1 Spectral Factorization by Frequency Sampling
In this section we review the basis for an interactive algorithm for computation of a fre-
quency sampled spectral factor. The algorithm (due to Davis and Dickinson [17]) provides
an effective computational tool for obtaining the optimal gain Kopt via (22) without regard
to computational difficulties associated with large dimensional Riccati equations. Conver-
gence of the algorithm depends on certain technical assumptions which delineate the class
of transfer functions. In the finite dimensional setting, a recursive algorithm for compu-
tation of the causal spectral factor F(s) follows from a Newton-Raphson iteration for the
matrix Riccati equation (19) given an initial stabilizing feedback K0 = B*P;

P,+,(A - BB*P,,) + (A - BB*P,)*P,+i = -C*C - PnBB*P,,.

At the nth iteration one can take an approximation to the causal spectral factor as

Fn(s) = I + B*P(aI - A) - 'B.

Then following Davis and Dickinson 1171 this leads to the form of the algorithm

F,+, (iw) = P+ { [Fn,(iw)]-'H(iw)[F,(iw)]-1 } F,,(iw), (31)
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I where P+ is the causal projection operator defined on the convolution algebra I ZI or
Is DZ by

Computation of causal projection of a signal is a standard problem in signal processing
which can be effectively solved through the use of a Hilbert transform [25], [26].

DefinitIon 2 The Hilbert transform of a signal f(t) is given as [25]

1f~ 1 (r) 1
1(t) -, -dr = 1(t) • . (32)

VJc t -r st

The basic utility of the Hilbert transform is evident by examination of its Fourier transform.
Let I'(w) be the Fourier transform of 1(t) and F(w) be the Fourier transform of f1(t).

f (1)d, edt. (33)
Since or Z~w = JP w) = ftcr 7! _ - V

Since for Z(w) = *ei"Idt we see that H(w) is a complex function with the properties

IH(w)l = 1

argHM = -sf2, w >0 (34)u/2,w0

Therefore from (33) and (34) we get that

€ -iF(w), w > 0 (35)
iF(w), w < 0

Now to compute the causal projection of f(t) (as in (31)) given frequency domain data
F(w) we first compute the Hilbert transform

P(w) = F(w) -
1'W

S By duality of the Fourier transform pair the property (35) holds in the time domain t;

W r-1 { P(W)} = -i sgn(t)f (t). ;

Finally causal projection can be computed as

1 F(w)) = ' [F(w) + iP(w)]. (36)

Before we consider computational issues further we review the extension of this algorithm
to irrational transfer functions. The questions of existence and uniqueness of the spectral
factorization of the transform H(s) = 1 + GT(at)G(e,) naturally lead to conditions for which

MN S(w) = GT(-iw)G(iw) is positive semidefinite for w real. In the convergence proof of the

.

L facto i in of th trnsor H.);:+;(a 
s n tral la to conditions~ fo hc



SEI-TR-86-14 11

iteration (31) Davis assumes that G(9) is the Fourier transform of a real, vector-valued
function which is both integrable and square integrable; i.e., G(isw) E 1(£, n £2).

With these assumptions it is clear from the classical theory of Gohberg and Krein [28]
that H(s) has a unique spectral factorization as given in (21) with

F*(iw) - I E 7(Lt)
where 7(£+) is the class of Fourier transforms of functions in £n with positive support.
As noted in [17], the assumptions on G(s) in fact imply that

F i(iw) - I E 7'(£ n f+)

and F(iw) = F(-iw).
Using this assumption Davis is able to show that the recursion (31) starting from an

initial Fo(iw) E .7(£l n £2) has all iterates F.(iw) E J(£ n £2) and that:

, lim.-. F,(w)F.(w) = H(w) almost everywhere (37)
limn1,.... F(.s) = F(s) for all a with Bie s > 0. (38)

These results should not be surprising for the class of transfer functions considered. The
following theorems summarize well known properties of £, and £2 functions.

' i Theorem S ([29]) If f E £I then

1. w - (w) is uniformly continuous for w E !

3. Ij(w)- 0 as IwI, "o

4. f(t) = f_. f(iu)e'wdw almost everywhere in 1.

Theorem 4 (Parseval's theorem [29]) If f E £ then
.1.

If° 12d •jW) / 2 127
2. as N --. o

I-iN f (t) e -'dt f f(iw)

3. as N oo

2 f f(t)

So we see that f E £, means that 1(iw) is bounded on w and therefore the Fourier
transform is well defined while f E £C2 provides consistent approximation theory for band
limited signals. We note that the third £ property means that such transfer functions are
effectively band limited and strictly proper.

' ,

0-k €.4 .. . e..' .'W ,= P.'...: , .' . .0 . . ' ' ' ." ' '.. ... ". " .. " 4.
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eration to G(s) both causal and stable so that G(a) is analytic for We a > 0. Thus the3 transfer functions we are considering belong to the Hardy space G(8) E H 2 n HO. Recall
that by definition I E H if I is complex valued and analytic in C+ (the open right half

Sof the complex plane) and
sup f(a + iw)ldw < oo.
o>0-G

. while 1 E HOO if 1 is complex valued and analytic in C+ and

sup I()l <0c.
SEC+

The first property is inherited from f E L2 while the second comes from f E ZI.
Finally, we remark that for mechanical structures that transfer function models can be

factorized in a "product expansion" [30]

= SA 1+ (82/Z) (39)
1+ ('62/Wj)

Thus we conclude these remarks by indicating that the class of transfer function models
for which spectral factorization can be computed by the present method are meromorphic
and have representations as (39).

2.1.1 Remarks on Algorithm Construction

With regard to the integral formula for the optimal state feedback gain it is clear that we
need [F(i)]'- . Thus as suggested by Davis it is convenient to implement the iteration in
the form

= IF.]-' (I + P+ {[F.p'H [& 1 - 1})'. (40)

Furthermore by initializing with F0 a diagonal matrix with diagonal elements equal to the
spectral factors of the diagonal elements of H the second term of (40) remains a pertur-
bation of the identity (since IF1*]- H [F. ]-1 - I --* 0) which regularizes the computations.
The diagonal initialization guarantees that the first residual [Fo]-'H[Fo]-1 has ones on the
diagonal and all off diagonal elements less than one in magnitude. Using the properties of
the Hilbert transform and the formula (36) one can readily compute the causal spectral
factor for the individual scalor transfer functions directly (i.e. without iteration). In par-
ticular, the kIc' diagonal element of H(w), hk(w) is a real valued function with ht(w) > 0.
Let t(w) be the Hilbert transform of hk(w); viz.,

I7() = da (41)

then the causal spectral factor h&(iw) = fl(-iw)f&(iw) is given by

fh(w) ,1 Re h(w) e- &M. (42)
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Finally, we remark that numerical computation of the Hiblert transform can be achieved
in several ways. Direct numerical integration of (41) is complicated by the fact that the
integral is convergent in the Cauchy principal value sense. Effective quadrature algorithms
for such problems have been coded and tested. A public domain version utilizing an
adaptive quadrature procedure is available in the routine QAWO contained in a software
package called QUADPACK [31].

Another approach is taken by Davis [17] who uses an algorithm of F. Stenger [32]. This
procedure essentially implements a discrete (sampled) version of the required computation
using a digital Hilbert transform. For a finite number of sample points the Hilbert trans-
form computation can be implemented by taking a discrete "fast fourier transform" (FFT)
of the sampled data and shifting the imaginary part of the transformed data according
to (33). It is well known that control of error induced by the sampling process (Gibbs

.9 phenomenon) requires the careful choice of "data windows" or weighting functions for the
computation. Although these considerations are well described in the literature on digital
signal processing [26], [34], [33] it is not apparent that these considerations were contained
in the work of F. Stenger.

In our experience th, direct implementation of the algorithm described in Davis and
Dickinson, based on the causal projection of F. Stenger [32] is unreliable at best. Since
detailed design of window functions for discrete Hilbert transforms was considered outside
the scope of the present study we have found it expedient to use the adaptive quadrature
software from QUADPACK [31]. It should be noted however that this approach may
suffer in production grade applications by the computational inefficiency of the quadrature
procedure by comparison with an FFT implementation of the discrete Hilbert transform.

Z4 2.2 Importance of Damping in Models for Distributed Control

For the present study we have attempted to compute distributed controls for several ex-
amples. Several negative results lead us to reevaluate the theoretical basis for control
and modeling problem. Our difficulties stemn from precise computation of the irrational
transfer functions for several distributed models which will be discussed later. Thus our
control laws are computed and tested on bona fide distributed parameter models and not
on finite dimensional approximations; therefore the idiosyncracies of many available mod-
els (which we unfortunately tried first) lead to difficulties. In this section we briefly review
our most recent conclusions about the assumptions in modeling for mechanical structures
and resulting computation of optimal control laws.

The most pertinent comments in the literature appear to be summarized in the work
of Gibson [10]. In particular, the importance of damping and the ability to compute
distributed control laws for infinite dimensional models for mechanical structures. It is
true that computation of control laws for such problems will always involve approximation
in modeling, control problem formulation, and numerical computation. Gibson focuses on
this question of approximation in modeling and control for distributed parameter problems
via the use of finite dimensional models and control computation based on these models.
Although, on the surface, the Davis method (based on spectral factorization of irrational
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transfer functions) is not subject to finite dimensional approximation (at least in the sense
of modal expansions) it is clear that approximation via sampling and interpolation of the
transfer functions involved is required. The examples in Section 5 suggest that additionally
some form of rational approximation may also be required for numerical computation of

S the distributed gain.
Let us consider some observations of Gibson 110]. First, Consider the class of elastic

mechanical structures modeled,

i(tz) + Co (t,z) + Aox(t, z) = Bu (t) (43)

where x E )(fl) appropriately chosen to match required boundary conditions, u(t) is a
finite dimensional vector of controls, A0 is a self adjoint operator A0 : D(Ao) --+ M densely
defined on M. Gibson further assumes that Ao is coercive; i.e.

(AoX, z)N >P2I1I, z E D(Ao)

and A4 1 is compact. CO is nonnegative, symmetric linear operator and there exists -y _ 0
such that

117ozll _ 'llIAoxllI, x E D(Ao). (44)
Finally, B0 is taken to be a bounded operator. Gibson shows that (44) is a necessary
condition for the resulting semigroup operator for

A=[0 1-Ao - Co

Z on M x X to be uniformly exponentially stable; i.e., there exists M > 0, a > 0 such
that I1eAII _ Me - Ot for t > 0. Such behavior corresponds to the case when damping
provides a uniform decay rate. Gibson addresses the question of convergence and stability
of a sequence of finite dimensional (possibly modal) approximate control problems to the
unique optimal control for the distributed model. His results indicate 110, theorem 4.1]
that for the quadratic linear regulator problem for the distributed model above (43) that
if a solution exists the exact optimal feedback control provides a closed loop system whose
infinitesimal generator Aj = A + BKp,1 generates a strongly continuous semigroup which
is uniformly exponentially stable.

For systems without damping; i.e. C0 D- 0 in (43), Gibson shows that there can be
no nonnegative, selfadjoint solution for the algebraic Riccati equation for the distributed
model. This follows from the observation [10, theorem 5.13] that for CO = 0, the semigroup
generated by A + C for any C a compact linear operator, cannot be uniformly exponentially
stable.

For systems with damping Gibson shows that the damping must be such that A (the
generator for the open loop system) is uniformly exponentially stable in order that uniform
exponential stability of the closed-loop system can be obtained by compact linear feedback.
The significance of this fact is that the physical nature of damping must be considered in
the computation of distributed parameter control and for problems where the available
control affectors provide 'localized' (in the spatial domain) forces (or torques). Damping

V V
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with (at least) a uniform decay rate (for essentially all modes) is required for such systems

to be controlled with uniform exponential stability. Although it is generally agreed that
physical structures will have this property it is somewhat disconcerting that many standard
models for simple structural elements like beams with internal damping do not have these

properties. In fact, with the exception of viscous damping there does not appear to be a
single, universally accepted, well-defined mathematical model for beam dynamics which is
obviously appropriate for the study of distributed parameter control of structures 182].

In Section 3 we will discuss damping models for structural elements in detail. At this
point we remark that in this study it became apparent that the performance of active
control of elastic structures was seen to be heavily dependent on. the type of damping

Pr models used. If one is willing to assume a sufficient amount of viscous damping then
stabilizing control can be computed. Since viscous effects will definitely not be present in
space applications one is faced with a choice of several models for internal damping. Many
of these models lead to problems for which either a uniform decay rate is not available
or for which the spectrum of the operator contains more than mere eigenvalues. These
models cannot be stabilized by compact linear feedback whether it is computed by Weiner-
Hopf methods or by modal approximation and solution of a finite-dimensional quadratic
regulator for the reduced model. However if one takes the second path the relevant stability
questions are completely lost in the model reduction.

What is an appropriate choice for modeling internal damping in space structures is
definitely an open question. This issue has apparently not received a great deal of attention
in the aerospace industry especially in that portion of the community involved in control
of large flexible structures. The standard procedure here (as evidenced in for instance the
ACOSS program) is to assume "low" modal damping can be added to the reduced-order

A model prior to control system design. In the present frequency domain computations one

is forced to resolve these issues before proceeding with control computation.
For the computation of distributed control according to (30) it is therefore necessary

that damping be of (at least) uniform exponential type. However, even more is required
in practice. Since K.,t will be computed (in our approach) by numerical evaluation of
(30) it is clear that the integration will be performed over a finite bandwidth by numer-
ical quadrature. The required bandwidth for integration depends crucially on the open
loop system bandwidth for the continuum structural model. This means that effectively
damping must be ultimately proportional to frequency for all high frequency modes. This
is consistent with the usual notion of material damping but is required here for numerical
reasons.

2.3 Practical Aspects of Computing Distributed Control Laws

tral factorization and distributed gain computation and its relation to standard methodsI
!k based on finite dimensional approximation of the evolution equations. We highlight var-

ious methods for model approximation (i.e. reduced order modeling). The methods we
employ are based on frequency domain computations for state space models and can be

VC
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compared directly with state space methods. However, as discussed in Youla et al 135] the
Wiener-hopf method can treat models which have no state space analog 124].

Reduced order modeling (ROM) of the abstract control problem (7)-(10) can proceed
in many ways 136]. At a fundamental level analysis of ROM involves decomposition of
the state space M((fl) via an orthogonal decomposition M = MN(J MR where MN is a finite
dimensional subspace of M (fl) and MIR is a residual apace. For example, with x(z) E M{(fl)
let z be expanded as

z(z) = Oo kk(Z)
k=1

which we assume converges. The series {Ok(z)}=l provides an orthogonal basis for )((fl).
Then the ROM space is

M(0) = span{0. (z),02 (Z),O

This approach embodies finite element methods based on Ritz-Galerkin approximation as
well as truncated modal approximation.

In Balas [36] tradeoffs are discussed for the formulation of optimal control for dis-
tributed parameter systems (DPS) by projection onto reduced-order subspaces. In Bern-
stein and Hyland [37] an optimal projection approach is described for reduced-order models.
In applications it may be desirable to define a control objective of the form (10) so that
only a finite number of modes are considered for active control. Typically the accuracy
of any mathematical model degrades with higher frequencies. Sensors and actuators have
finite bandwidth.

Let PN be an orthogonal projection PN : )(fl) --+ )N(f). The quadratic control
objective (10) is defined with respect to a controlled output y(t) = Cz(t, z) given by the

Noperator C : M --- &. A reduced-order control objective can be defined by the choice
C = PN. For the finite dimensional version of the control problem (7)-(10) it is known that

*an optimal control law exists which stabilizes the system if and only if (A, B) is stabilizable
(i.e., any state trajectory contained in the uncontrollable subspace is exponentially stable)
and (A, C) is detectable (i.e., any state trajectory contained in the unobservable subspace
is exponentially stable.) For distributed parameter models for elastic structures we assume
the operator A has discrete spectrum and is at least, uniformly exponentially stable for
essentially all modes. Thus the optimal control problem (7)-(10) with controlled output
given by C = PN has a unique stablizing control law given by (13).

We remark that the formulation is technically distinct from the methods discussed
in 136] in that the control problem incorporates ROM as part of the control objective
rather by approximation (ROM) of the (constraint) equation (7) by Ritz-Galerkin or modal
truncation. In terms of the mild solution (9) we see that with i,(t) = PN z(t, z),

JPt
d. Y(t) = PNCZ(0,z) +] P-A(t)Bu(a)do. (45)

Thus the control problem can be equivalently stated:
Problem minimize the objective

J(U) = 17 ilyll + ilull' di
A. 11#

' 77. . . " ;-?? ?-';:- ,'-';.- ::-::-? . ..? "z.,.,. '.:.'",.:.'.<... --';-:---"-'-. -'-'. -.,:.-'-".- -',%'.;4
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subject to (45).

The projection PN is orthogonal so that for any z(z) E )(fl) we can write PNx + PRz
where PR is the orthogonal complement projection; i.e.,

PRZ(t,z) = E0
k=N+l

Thus (45) can be written alternately as an evolution

j,(t) = PNAPNz(t,z) + PNAPRZ(t,z) + PNBu(t).

Roughly put, the term PNAPRZ(t, z) does not contribute to the control objective so that
the control problem is equivalent to the problem
%mrin JI [U(t)[12 + I[y(t)112 d t

"EU, fo

subject to
j,(t) = PNAy(t) + PNBu(t);

i.e., a finite-dimensional control problem.
The Wiener-Hopf approach, taken in this study, with the reduced-order control ob-

jective further clarifies that the underlying control problem is finite-dimensional. One
way to view ROM in the frequency domain is to consider rational approximation of the
transcendental functions. Consider the transform of (9);

1(9, z) = R(8;A)z°(z) + R(a;A)B 6 (s).

qIn Section 3 we show that for elastic structures this abstract equation can be written in
the form

ic(s,z) = G (s;z'W) O(w)dw + HBc(a,z)ft(a),

where G,(s; z, w) is a Green's function. The resolvent operator R(s; A) is an integral oper-
ator with kernel a Green's function. Let wk, CI be the kth modal frequency and damping
for A with respect to some ROM basis for NN(fl). Then (at least on the surface) modal
truncation can be viewed as a truncated partial fraction expansion (see Wie and Bryson

I130]); PN (,z) = f Gr.N(a; z, w)z 0 (w)dw + HBC,N(; Z, W) (S)

where
= N (z,,W)

€..: NHc,N(.; z) = (z,+ 2Cwk + w) 2

HBCN(; &)=E 2 +2Ctwts+wU2k=l ,k
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The computational procedure for the Wiener-Hopf problem outlined in Section 2 starts
with the definition of the transfer function G(s) from the control fi(s) to the controlled
output b(s). For the case of ROM control objective we get

G(s) = PNR(s;A)B

= HBC,N(S; z)

a rational transfer function in the complex frequency s. Several algorithms exist for this
classical problem [38,391. Then the optimal gain formula requires integration as

K opt  -1 /0°[F.(iw)]1GC(iw)CR(iw;A)dw . (46)~27r

We remark that the feedback "gain" is an integral operator with kernel we call the dis-
tributed gain Kd, where

Kd,.(w) = f. [F'(iw)]-'G'(iw)CG,(iw; z, w) du) (47)
a.2..

can be computed as a path integral in the complex plane and replacing the Green's function
G, with its ROM G,N and G replaced with GN in (47) shows that the integrand is a rational
function in s. Thus Kd,.(w) can be evaluated by residues.

The main point to be emphasized is that the numerical procedure discussed in Section 2
takes a fundamentally different approach by using frequency sampling in place of rational
approximation for the required computation of:

* spectral factorization

* distributed gain computation

The numerical procedure can provide an effective, computationally efficient alternative-
even for large finite-dimensional problems which arise in optimal contol of DPS with
objective which weight a ROM subspace.

Finally, we conclude this section with some remarks about the practical aspects of
frequency sampling and numerical computations. The spectral factorization algorithm
has already been discussed in detail. The numerical evaluation of Kd. (w) proceeds by
a trapezoidal quadrature over a finite bandwidth -wo -5 w < w0 . The choice of w0 for

numerical integration depends on the bandwidth of the transfer function G(s). For the case
of reduced-order control objective w0 can be readily determined by reference to the rational
transfer function. For the irrational G(s) it is necessary that the high frequency modes be
sufficiently damped so that finite bandwidth integration yields a reasonable approximation
to the true Kdi.(w). The examples in Section 5 serve to illustrate that in some cases even
more seems to be required for effective convergence of numerical algorithms. Depending
on the choice of the control objective it seems that rational approximation may still be

required for the finite bandwidth computation of the distributed gains.

.P J
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The frequency domain approach offers several alternatives for model order reduction,

approximation, and control computation. Direct approximation of transfer functions by
truncation of product expansions is discussed in Wie and Bryson [30]. This method has
also been used for simulation 140). Here we expand an irrational transfer function (assumed

ru~ to be meromorphic) G) (

G(s) = n (s) (48)

where nk(8), d(S) are (relatively low order) polynomials in .. By truncation of (48) we
effectively match a finite number of both poles and zeros of the irrational transfer function.
This method is clearly distinct from the modal and finite element methods. Approximation
of the zeros of the transfer function may be extremely important for control system design
since performance of designs based on poorly approximated zero locations can be very
sensitive to model errors [30,24]. Zero locations arise in flexible structure control problems
from the location and type of actuators and sensors.

Finally, in this report we have not addressed the design of dynamic control laws. This
question is discussed in detail in [241. We remark that distributed state feedback control
may be quite realistic for the next generation of spacecraft with flexible structures. Recent
technology developments in instrumentation for distributed measurement clearly shows a
trend to provide low cost alternatives for distributed measurements of displacements and
angular rates as well as various physical quantities such as strain rates [41]. In Section 3
we consider choice of state space coordinates for continuum models of structures including
the physical significance of the state variables.

.4..
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3 State Space Models for Distributed Structural El-
ements

3.1 Standard Forms for Linear PDEs

In this section, we will consider the problem of deriving standard state-space descriptions
for typical distributed elements. In Section 3.2 we use these descriptions to compute the
complete, frequency domain response as required for the control problem outlined above.
It is our contention that the systems of interest to us-specifically beams with one space
variable and perhaps several degrees of freedom-can be represented by one of two stan-
dard forms. Once identifying the structure of these standard modeli, it is straightforward,
although far from trivial, to mechanize the construction of the required transfer matrices
using symbolic computation [42]. Moreover, in order to assemble hybrid system mod-
els by the interconnection of components or subsystems, it is essential to have a clear
understanding of the causal requirements of the component mathematical models. The
following paragraphs develop the required concepts in terms of commonly used structural
elements. Since typical elements interact at physical boundaries, our foremost concern is
with the formulation of appropriate boundary conditions for well-posed, initial-boundary
value problems.

Before proceeding, we establish some basic terminology associated with systems of par-
tial differential equations. Consider the system of first-order, partial differential equations
defined for t >0 and 0< z< L

E C1 =F7W+Hkw, w ER". (49)t az
If E is nonsingular, then (49) can be written

-,, =FT +H
at - Z+H (50)

where F = E- 1 F, H = E-Ift. If F has only real eigenvalues and a complete set of
iN eigenvectors, then the system is said to be hyperbolic (see, for example, Zauderer [431).

If there are multiple real eigenvalues and less than a complete set of eigenvectors, then
the system is of (partial) parabolic type. If all of the eigenvalues are complex, the system
is of elliptic type. Systems with complex eigenvalues are not causal. Lyczkowski, et al.
[44], and Sursock [45] provide an interesting discussion of this point in connection with a
fluid flow problem. The underlying problem is that systems with complex eigenvalues are
not well-posed as initial value problems, John [46], Lax 1471. We will not consider such
problems any further.

If E is singular, (49) can give rise to mixed systems of all types. Some examples can be
found in Firedly [48] and Lapidus and Pinder [49]. Our interest in this case will be limited
to purely parabolic systems of the type

-: = -- + F W + H,(1

• ~ ~ ~ ~ ~ ~ T a-Z2 T•." • ZW w _ % r . € r,"V", ". " ""4,., '4 'J"'i ,'''" J''##.'%
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which commonly arise in engineering problems.
When the equations of motion for structural elements are derived from conservation

laws-in particular, from variational principles-the resulting equations are typically of
hyperbolic type (see, for example, Crandall, et al. [271). However, further standard as-
sumptions and approximations reduce the equations to parabolic systems in the form of
(51). In the following paragraphs, several examples will be given. In summary, we are
primarily interested in hyperbolic systems (49) and parabolic systems (51). In addition to
equations (49) or (51), there are associated initial and boundary conditions. For equation
(49), these conditions take the general form

initial conditions w(z,O) = f(z) -

boundary conditions Ezw(0,t) + rIw(L,t) = g(t)

where dim(g)=dim(w); and for equation (51), they take the general form

initial conditions w(z,O) = f(z) (53)
boundary conditions IW(Oi)+ E2 -(o,i )+ rlw(L,t) +r 2 =(L t)-g(t)

where dim(g)=2dim(w).
It is well known that the coefficient matrices in (52), (53) must satisfy certain con-

straints if the problem formulation is to be well-posed. In the hyperbolic case (equations
(49) and (52)), these constraints essentially require that the boundary conditions be com-
patible with the wave directions. Further discussion can be found in Russell [151 and
Agarwala [13]. In the following sections we will discuss some standard models for beams.
The following notation is standard and assumes the elastic beam is uniform (i.e., the
parameters are independent of the spatial coordinate.)

Standard Notation for Uniform Beam Formulae

"G effective shear modulus
p mass density
A cross sectional area
E modulus of elasticity
I moment of inertia
L beam length
z longitudinal coordinate
17(z) lateral displacement

angular rotation of cross section

% 3.1.1 The Tlmoshenko Beam Model

We will show how some conventional beam models can be reduced to the standard forms
described in the preceding paragraphs. In particular, we will begin with the Timoshenko
model and then consider two commonly used approximations which can be derived from it,

the Euler-Bernoulli model and the 'string' model. The equations of motion can be derived
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using Lagrange's equations [27] and in the absence of dissipation take the form

pA- = _"[rG (4
a20 a

at2  = z az KG az

along with the natural boundary conditions for a = 0, L

displacement or shear force
17(a,t) = 'i,(t) , 1GA hvt) - (a,t)) = f(t) (55)

and

rotation or moment

,(a,t) = ¢.(t) EI =r.(t).

The two equations (54) can be replaced by four, first-order equations by introducing
two new variables, v(z,t) and Iy(z,t):

arl av

at Tz'
_v rG L1 _\ (7a = T - )' (57)

ao a-y A

atY Eao
:.:.at p az"

These equations clearly represent a hyperbolic system and the natural boundary conditions
become for a = 0, L

displacement or shear force
n (a,t) = 7. (t) V(a,t) = i,.(t),i,,(t) = _,A (58)

and
rotation or moment

(aO,t) = 0.(t), Y(a,t) = '.(t), i. (t) = !Y-' (59)

Note that the boundary conditions applied to the first order system (57) require the
time integral of boundary forces or moments applied to the beam. It is easy to confirm that
the transfer functions relating forces or moments to displacements or rotations as derived
from either equations (54) or (57) are indeed identical and that the required integration
of the shear force or moment is essential in the first-order forms.

3.1.2 The BernoulH-Euler Beam Model

The Bernoulli-Euler model is obtained from the Timoshenko model with two additional
assumptions:
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1. rotational inertia is neglected, pI - 0

2. shear deformation is neglected, ? - -+ 0

Assumption 1. reduces the second of equations (54) to

KGA (7-) - (EIL) (60)

Equation (60) and assumption 2. are now used to reduce the first equation of (54) to

a2 V. 82 217pA = -- 82) (61)

Note that equation (60) along with assumption 2 leads to the following expression for shear
force (8i

f = z.zA I7) (62)

Although (62) is commonly used in conjunction with the Bernoulli-Euler model (61), it
should only be used with caution. Equation (61) is valid only in the limit f -- 0. We will
return to this point below.

The boundary conditions (55) and (56) reduce to for a = 0, L

displacement or shear force
77(a, t) = TI.(t), -EFal = f.(), (3

i and
displacement or moment (64)
= O(at) = 0.(t), EI2I7 = (Oz 9z2

2Note that nonzero shear force is included as an admissible boundary condition; however,
the remarks following equation (62) apply.

*Equation (61) can be reduced to 'first-order' form by introducing a new variable -y(z, t)

- 19 2  (65)
at A a 2 '

' 9-Y E 492 1

at p az'

and the boundary conditions associated with (65) are for a = 0, L:

displacement or shear force (66)
17(0t,t) = 17.(t), -. (t)," =

and
rotation or moment (67)

0 =.(t), Y(C,t) = Y.(t), PI
Observe that (65) is a parabolic system of the type (51). Equations (65)-(67) can be
derived directly from (61) or from (57) upon invoking assumptions 1 and 2. We should
also note that a corresponding expression for shear force becomes

I ) a2); (68)

f. W .. ** ~ a a . z'4 .
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3.1.3 The 'String' Model

In some situations, bending deformation may be negligible with respect to shear deforma-
tion, that is, 101 < laq/azl. In this case, the first equation of (54) reduces to

82,~t11 a xIGAp? (69)

with boundary conditions for a = 0, L

displacement or shear force
n (a,t) = n.(t) ,KGA = fM(t). (

This simple model is primarily useful for illustrative purposes. Again by introducing the
new variable v.(z, t), equation (69) can be replaced by two, first-order equations

--1 _ (71)at Oz

8v KG 917
at 0 49z

subject to boundary conditions for a = 0, L

displacement or shear force (72(a,t) - i,, v(crt) - z'(t), 1 . Le (t)pA"

3.2 Beam Models with Dissipation

Various dissipation models have been proposed for use with the Timoshenko and Bernoulli-
Euler beam models. A summary of the most frequently cited models may be found in
Pich [53] and Wie and Bryson [30]. Experimental data is scant, particularly in the
high frequency range, so that none of these models can be considered definitive. Recent
experimental work by Russell has demonstrated that the usual conjecture of 'damping
proportional to frequency' for internal (material) dissipation is not complete [82]. However,

rit is reasonably representative of material damping for certain low to midrange frequencies.
Moreover, some of the more popular models were never intended for use in general transient
analysis and fail to yield well-posed dynamical models (Chen and Russell [54]). One
approach to developing dynamical models which include dissipation is to augment the
variational development of the equations of motion by introducing a Rayleigh dissipation
function (see also [821. We formulate such a function based on the following assumptions:

1. external dissipation forces are proportional to the coordinate velocities (i.e. ,,),

2. internal dissipation forces are proportional to strain rates (i.e., shear strain rate,
= 8 /az - 4', and compressive strain rate a4/az).

PN
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C4 // Kelvin-Voight damping

-C2"/ Chen-Russell (or 'square root') damping

cli/ viscous damping

Table 1: Dissipation terms and standard damping mechanisms

Thus, we define the dissipation function as

f +\ 2C3' 2  a a~.- R(i ,4) -I -Ic,.i + , + +at az at. -t '' +,azat/ z
2J C1 +at C2  +3 () - dz,

where C1 , c2 are coefficients of external damping and c3 , C4 are coefficients of internal (ma-
terial) damping.

The modified Timoshenko equations are found after carrying out the ususal variational
'p calculations [27] yielding

A a2- a3__ 17 82 (73)
-. a2~ - a GA CL7 a+ C 3 v _a

2 /pA-t [z -fz at+C3 az2at azat

2, a aqs7a

at (azat - at + caZ2at
,, E  + GA2  -') (74)

To obtain the Bernoulli-Euler model we invoke the approximations pI -* 0 and ain/az -
'C. 4 -- 0 with the result

pA,+ C4-- - C2- +ci, + EI-- = a . (75)

Table 1 summarizes the dissipation terms appearing in (75) in terms of standard damping
mechanisms [51,54]. Individually, these dissipation types produce well known eigenvalue
patterns for the spectrum of the abstract evolution operator A in (7). In particular,
the viscous term translates the spectrum parallel to the real axis, 'square-root' damping

Igives the wedge pattern characteristic of material dissipation and Kelvin-Voight damping
provides a pattern where the sequence of eigenvalues have an accumulation point located
on the finite real axis [10]. See for example Pich6 [53], Gibson [10], Chen and Russell [54],
Wie and Bryson [30], and Balas [9].

Equations (73)-(74) are easily put in the first-order form appropriate for our standard
control modeling problem. For the Timeshenko model, introduce the variables v(t, z),
-y(t, z) and write the equations as

a9t7 OL C3 C3 a8 1~ ~ __O + c O7 c @ ci1,
tat 5gZ pA z 2 pA taz

_9 1KG a&17
- P - I -4 , (76)

V,,- ;'7. ', .. .- .y. .. .. ..<;* i ;?% , L *. %' . ; 3 "" """"•
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z +I pIOz + pIz p 1

6 E aO
Iat p az

For the Bernoulli-Euler model (75), introduce the variable -y(z, t) and write as

_T I 4 a'r; c2 a2 /al = I a 2 I C4a 47 + f2C 2 7 , (77)
at A IZ 2  pA az4 pA aZ2

a-Y E9 2 77
, Wt p agz2

3.3 Frequency Response Calculations for DP Systems

In this section we will be concerned with the computation of certain irrational transfer
functions and a resolvent operator. This provides a complete model including transient
response for the DP system. For our purposes, the resolvent can be considered as an
integral operator with kernel a Green's function. Using transform methods we compute
explicit formulae for the abstract objects discussed previously. We focus on hyperbolic
and parabolic linear (one dimensional) structural models for distributed elements. Such
models can be used for elastic dynamics of beams, cables, etc. Finally, the computations
are extended to hybrid system models consisting of interconnections of elastic components
with rigid bodies and other lumped parameter models.

3.3.1 Hyperbolic Models

A, Consider a class of elastic structures represented by hyperbolic partial differential equations
in one space dimension 0 < z < L, (e.g. arising from models such as discussed in the

p previous section):
az(tZ) = Fa(t, z) + Hz(t,z) + Ev(t,z) (78)

sujtat az
subject to boundary conditions

51Ez(tO) + rlx(t,L) = Df(t), (79)
:w and initial conditions

HrX(O,z) = z°(z) E )"(O,L). (80)
Here, z is an n-vector valued state z E )"(o,L), v E )t(O,L) is an I-vector valued dis-
tributed disturbance, f is rn-vector valued boundary interactions, F, H are real n x n
matrices with F nonsingular and diagonalizable [43], and El, r, are n x n matrices. Con-
trollability questions for systems of this type are considered in Russell [15]. We remark
that (81) is a concrete example of the transform of the abstract formula (9). After taking

S Laplace transforms in the temporal variable t, we obtain

k(sZ)=fo G,(s,z,w)k(s,w)dw + HBc(s,z)fr(s) (81)

.6
ip
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where
f(,Z) = x°(W) - C '(8,W),

Kand .k, V, F are the Laplace transforms of z, v, f respectively. The function G,(., z, w) is
the Green'. function [50,52] for (78), (79) and Hnc(a, z) is a transfer function from bound-
ary interactions to state. Since in most cases of practical interest the control of flexible
structures will be effected by actuators whose influence functions are highly localized, we
have formulated our model with boundary control only.

Comparison with (1) clearly shows that the resolvent for the operator A )(0, L) -.

' "(0, L) defined by (78) and (79) is the integral operator foL G(8,z, W) dw.
A straightforward calculation leads to the following form for Hhc

HBc(, z) = N(9, z)D (82)

where

(s,,) = e!-l(. , (83)
N(sz) @(s,z)[EI+r 1 o(s,L))1

The Green's function for (78), (79) is the solution to

8G(8, z, W) = F-1 [s1 - H] G,(a,z, w) + 16(z - w) (84)8z

subject to the boundary conditions

: G,(SoW) + rIG,(s,L,w;) = 0 (85)

where 6(.) is the Dirac delta function [50], [52]. From (84) we see that the solution is
discontinuous at the point z = w. After some computation, we can write

G,(8, Z, w) Gr LEFT(8,Z, W), for0 < z < w8
G, rRIGHT(8,Z,w), for w <z < L

with

GvLEFT(.,,Z,W) = -N(.,z)r t(sL - w), (87)
Gr RIGHT(Sz, W) = N(S,z)Eif(8,-t). (88)

The required calculations are now summarized. To obtain the forced response to bound-
ary control f(t) can be found in the Laplace transform domain as the solution to

.(s,=z) = F-(.I - H)1(9,z)

subject to boundary conditions

Ni(eo) + ri(s,L) =DI().

'I
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The general solution is &(s, z) = e- t '

where k is an n-vector to be determined. Substituting the general solution into the bound-
ary conditions yields

Elk + rieF-'(*-H)Lk = D(s)

or
k = + rieFl(aI-H)L1]1Dj(s).

By substituting k into the general solution the terms in (82)-(83) can be recognized.
Derivation of the Green's function follows from (84)-(85) as follows. Note that inte-

grating (84) over a small interval w - <z < w + e gives
LW+4G,;z,w)dz = J+( F-1 (sI - H)G,(s;z,w)dz + I,,

by the sifting property of the delta function. Then by letting c --* 0 we see that the second
term on the right hand side vanishs and we get

G,(s; w+,w) - G,(8;w_, W) = In, (89)

so the Green's function is discontinuous at z w. A general solution to (84) has the form
(86) with

GLEFT(S, Z, W) = F-I(sl-H)zK,

G,trIGHT(.5,Z,W) = -(IHz

where Kt, K, are n x n matrices to be determined in the sequel. Substituting into (89)
p[ gives

K, - Kt - eF -(hIH) (90)

and into (85) gives
EIKI + rieFl(I-HLK, = 0. (91)

Substitute K, from (90) into (91) and solve for Kt

K, = -[T + rie -  I -Ir eF -

Now substituting Kt into (90) and solving for K, gives

K, = e-F -'(@I-H }w - E + IeF-qsl-HlL]- Ile F -IlsI-H)(L- w
"= [!- [, + rcF--H)L-reF-'(I-H)L] e-F-(-)

= [A + rieF-(I-)L]-1 [E1 + rieF'( H- ' - Fi#eFI(-H) e-F'(I-)J

A= E + rieF-'I(I-H)LJ-1Eie -F-I(Io-H) .

Substitution then into the general solution gives the forms in (87)-(88).

I
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3.3.2 Parabolic Models

We begin with the canonical, first-order model consisting of n equations as
CIX~~~t,~ Z) 19xtz)(t, z)

az(t,) - 9z(t,) + F az + Hz(t,z) + Ev(t,z) (92)
a t az2 Oz

subject to 2n boundary conditions

ax (t, O) az(t, L)
EX(t,o) + E2  az + rix(t,L) + r2 -9Z Df(t), (93)

and n initial conditions Nn

Let E = [E1,E2 ] and r = [ri,r 2]-each 2n x 2n real matrics.
Following a procedure as above the Green's function and boundary transfer function

can be computed as follows. Let

A~s) [ On Inl
A(s) - -- '(H- sIn) -G-F 1

A4(s, Z) = (95)

M(s,z) = [in,0¢(,,)[E + ro(s,L)]-'. (96)

Then the boundary transfer function is

HEc(s,z) = M(s,z)D, (97)

and the Green's function is given by

.1~ G 7(,z,w)= GTLEFT(S,Z,W), for 0 < z < w

, (GRIGHT(S,Z,W), for w < z < L (9)

with

,C LEFT - -M(s,z)1r4(s,L - w) I. ' (99)

C7 RIGHT =M(8,Z)E-(S,-W) [n 2
3.4 Modeling of Hybrid Systems

In most applications, models for the dynamics of flexible structures will involve interaction
between various elastic and rigid elements. In the particular case of flexible structures
associated with large space structures, the potential topological configurations can be
quite complex. Various elements such as beams, truss structures, cables, membranes, etc., .
may have dominant distributed parameter effects. Typically a central body or bodies
represent large concentrations of mass with respect to the overall low mass density of thejaI

#'1
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flexible structure. These are most effectively represented by lumped parameter models
of their rigid body dynamics. Additionally, various attitude control actuators can add

concentrated inertia elements which can be effectively modeled as lumped systems. Thus,
carefully chosen linear, hybrid models can provide an effective tool for analysis of dynamics

of vibrations and their effect on small angle motions for complex space platforms. In this
section, we consider the structures and computations of certain resulting transfer functions
and the resolvent operator for the composite system along the lines of Section 1.

The concept of a mechanical impedance (terminology borrowed from electrical network

theory) has been used in structural dynamic modeling for many years 1511. The dynamic
stiffness method (application to space structure modeling is reviewed in Piche [53]) uses
this notion to compute effective transfer function models for interconnected structures [55].
Our approach here will follow along similar lines except that we will focus on computing the
resolvent operator for a hybrid structure by direct manipulation of its kernel; viz, a Green's
function [52]. A hybrid, state space model is constructed in Burns and Cliff [12] (where
considerations are given for approximation and computation in the hybrid state space).
We will consider a hybrid state space as consisting of a direct sum of spaces X = X, E@ Xd
where Xd = N is the distributed part constructed on an appropriate Hilbert space of Nd-

vector valued functions with the "energy" inner product of (6) for a distributed parameter
system (DPS) written in abstract form (7) and Xt = WN, a finite dimensional state space
of the lumped parameter system (LPS).

For control of hybrid structures, we restrict attention to DPS modeled as either the
hyperbolic or parabolic (or mixed) cases which, as we have seen, can be expressed in the
frequency domain in the form

kd(8,z) = jLGr(s,z,w)If(,,w)dw + HBc(s,q)FPd(s) (100)

.. where
whr(e,w) 

= z°(w) - Efl(s,w). (101)

Clearly, (100)-(101) can represent a disjoint collection of distributed elements such as
beams, cables, etc. (Conceptually, a version of (100) can also be written for higher dimen-
sional spatial domains, but we feel for the current presentation that the required complexity
of notation can mask the simplicity of the underlying concepts-see Butkovskiy for details
[52].)

All LPS component models are combined into a LPS state space model as

it(t) = Atzi(t) + Btft(t), z = xl(0) (102)

with zt E RNI = XE a finite dimensional real space. By taking Laplace transforms in (102),
we write (analogous to (100))

.k 5(s) = Rt(s) x + HI(s)FI(s), (103)

where RI(s) = [BIN, - Al]' is the resolvent for the (matrix) operator At and Ht(s) =

R(')B. ..
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The hybrid state space X = 'e ED X consists of elements
z(t,z) = (zt(t) 14

(I)z ,X(t, z) k104)

which are N = Nd + Ne-valued functions of z E [0, L, t > 0. Finally, the interconnection
of component systems is resolved through a topological constraint relation consisting of
M = md + mt linear equations;

f(t) + Tizd(t,O) + T2 zd(t,L) + Tsze(t) = Ku(t) (105)

N where u(t) is a k-vector of control inputs to the hybrid system, Tj, T2 are m x Nd, T3 is

m x Nj, and K is m x k real matrices. The hybrid modeling problem is to find an equation
of the form (100) by solving (100), (103)-(105) simultaneously for the hybrid state z(t, z).
We provide the resulting model in the following form:

JL.
.( 8,z)-- fo G,(s,z,w) f(s,w)dw + R(s,z) x° + HsC(s,z)&(s), (106) 1

where ifM(s, w) is given in (101). The resolvent operator for the hybrid system is

(s; A) (S [Rsz) Gr (8, Z'W) -dw] (107) J

where R(s; A) X -- D(A) _ X, dr is N x Nd and 1 is N x N. are matrix valued functionsS which can be computed explicitly as follows:

R(S,,z) [ 3N Hi( )9is) T3 R(s), (108)
C -Hc(8, z)Q2 (s)

PGr (s~zw I (z P (8, W) (109)

where

Q(a) = I'W + Q = , (110)

Q(s) = [T3Hg(s), TIHnc(s,O) + T2HBc(s,L)I, (111)

P(s,w) = TiGr(s,O,w) +T 2Gr(S,L,w). (112)

XFinally, the N x k transfer function matrix from boundary control to hybrid state is

k H(a,), j Q(H)K. (113)

The derivation of (106)-(112) is straightforward and proceeds as follows. Substitute
(100), (102) into (105) and solve for the interconnecting force P(8). This identifies the
terms Q(s),P(s, w) above. Now substitute the appropriate components of Pr(s) into (100),
(102) and use the hybrid state model (104).

In Section 5 of this report we consider several examples illustrating these calculations. S
S.
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4 Homogenization of regular structures

In this section we consider the problem of modeling and control of a class of lattice struc-
tures, e.g., trusses. Their large size and repetitive infrastructure require special techniques
for structural analysis to cope with the large number of degrees of freedom. Approxi-
mations of such systems by continua provide a simple means for comparing structural
characteristics of lattices with different configurations, and they are effective in repre-
senting macroscopic vibrational modes and structural response due to temperature and
load inputs. Our approach to the construction of such models is based on a technique
for asymptotic analysis called homogenization. It has been widely used in mathematical
physics for the treatment of composite systems like porous media for which one wishes

,to have an effective approximating system with parameters which are constant across the
structure. 1

qb* Before developing the general features of the method and applying it to the treatment

of lattice structures, we shall make a few remarks on other work on continuum models
which has appeared in the recent structural mechanics literature.

Noor, et. al. [1] use an energy method to derive a continuum approximation for trusses
with triangular cross sections in which the modal displacements of the truss are related to a

*- linearly varying displacement field for an equivalent bar. Plates with a lattice infrastructure
..e are also treated. In Dean and Tauber [64] and Renton [74] exact analytical expressions

for the solutions of trusses under load were derived using finite difference calculus. By
expressing the difference operators in terms of Taylor's series Renton [77] was able to derive
continuum approximations to the finite difference equations resulting in expressions for
equivalent plate stiffnesses, for example. In a recent paper Renton [77] used this approach
to give equivalent beam properties for trusses, which complements the earlier work of Noor,
Anderson and Greene [3], and Nayfeh and Hefzy [2]. (See also (Anderson [3]).)

*In most cases a continuum model is associated with the original (lattice) structure
by averaging the parameters of the lattice over some natural volume (e.g., of a "cell" of
the structure) and identifying the averaged parameter value (mass density, stress tensor,
etc.) with the corresponding distributed parameter in the continuum model. A specific
form for the continuum model is postulated at the outset of the analysis; e.g., a truss with
lattice structure will be approximated by a beam, with the beam dynamical representation
assumed in advance. While this approach has an appealing directness and simplicity, it
has some problems.

First, it is very easy to construct an example in which the "approximate model" ob-
tained by averaging the parameters over a cell is not a correct approximation to the system
behavior. This is done in subsection 4.1.2 Second, one cannot use this procedure to obtain
"corrections" to the approximation based on higher order terms in an expansion, which
may sometimes be done in an asymptotic analysis. These terms can be used to describe the
microscopic behavior (e.g., local stresses) in the structure. Third, the averaging method

'See, for example, the papers of Larsen 189], Keller [681, and the reports of Babuska [57] for applications
and discussions of design techniques.

2 See the numerical experiments in (Bourgat [62]).
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(averaging the parameters over space) does not apply in a straightforward way to systems
with a random structure, since the appropriate averaging procedure may not be obvious.3

Fourth, the method cannot be naturally imbedded in an optimization procedure; and con-
trols and state estimates based on the averaged model may not be accurate reflections of
controls and state estimates derived in the course of a unified optimization - averaging
procedure. In particular, the method does not provide a systematic way of estimating
the degree of suboptimality of controls and state estimates computed from the idealized
model.

In this work we use a totally different technique called homogenization from the math-
ematical theory of asymptotic analysis to approximate the dynamics of structures with a
repeating cellular structure. Homogenization produces the distributed model as a conse-
quence of an asymptotic analysis carried out on a rescaled version of the physical system
model.

Unlike the averaging method, homogenization can be used in combination with opti-
mization procedures; and it can yield systematic estimates for the degree of suboptimality
of controls and estimators derived from idealized models. While our results are stated
in terms of simple structures, they demonstrate the feasibility of the method; and they
suggest its potential in the analysis of structures of realistic complexity.

In subsection 4.1 we give an example derived from (Bensoussan, Lions, and Papanico-
laou [60]) illustrating some of the subtleties of homogenization, particularly in the context
of control problems. In subsection 4.2 we derive a homogenized representation for the dy-
namics of a lattice structure undergoing transverse deflections. We show that the behavior
of the lattice is well approximated by the Timenshenko beam equation; and we show that
this equation arises naturally as the limit of the lattice dynamics when the density of the
lattice structure goes to infinity in a well defined way. The problem of vibration control of
a lattice is posed and discussed in subsection 4.3. In subsection 4.4 we derive a diffusion

papproximation for the thermal conductivity of a one-dimensional lattice structure. This
property is useful in analyzing new materials for large space structures.

Acknowledgements: We are grateful to Professor George Papanicolaou for bringing
p: Kunnemann's paper to our attention and to Drs. A. Amos and R. Lindberg for their

comments on an earlier version of this work.

2, 4.1 A one-dimensional example

From (Bensoussan, Lions, and Papanicolaou [60]) we have the following example:

d du(x )
"-[a'(z) d f(z),z E (xo, xi) (114)

,,U'(=o) = = ,,'(X,)

$Homogenisation methods do apply to systems with a randomly heterogeneous structure, see (Papan-
icolaou and Varadhan 1711) and (Kunnemann 1781). We shall treat such systems in a subsequent report.

I-. I
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where a'(x) 4-*- a(x/c), and a(y) is periodic in y with period Yo, a(y) a a > 0. It is simple
to show that

I u'Io def I u(Z) 1 + I dul(x)ruH .0l x dx< c (115)

and so, ug -4 u weakly in the Hilbert space H 1.4 Moreover,

d --+ M~)Y (y)dy (116)

and it is natural to suppose that u --+ u with the limit defined by

-. jM(.)j,(x) = f(x),x E (xo,x1,) (117)

u(xo) = u(X,)

This is untrue in general (Bensoussan, Lions, and Papanicolaou [60], pp. 8-10). The
correct limit is given by

d[a du(x) = f(x),x E (xo,x,) (118)
X d-x

ata

: u(x0) = ts(x)

with M( 1 f (119)

In general, M(a) > a; and so, the error in identifying the limit, (117) versus (118), is
fundamental.

The system (117) corresponds to averaging the parameter al(Z) over a natural cel; a
procedure similar to that used in the past to define continuum models for lattice structures.
As (118) shows, the actual averaging process can be more subtle than one might expect,
even for simple problems.

4.1.1 Homogenization of the example

RTo see how (118) arises, we can use the method of multiple acales which applies to a variety
of perturbation problems. Suppose

u'(x) = u(X, = u0 (X,') + Cu,(, ) +... (120)

that is, we suppose that u' depends on the "slow" scale z and the "fast" scale y d, X/;
and we adopt an ansatz which reflects this dependence. Using the identity

[U(X )1 = + -x = - (121)

S 'Here H' V u E L2 (Zo,:,): III, < oo)
A%

N N-
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then (114) may be rewritten as

+ -N y)(Y + )[Uo +C + ...1} =f !(122)

Simplifying and equating coefficients of like powers of c, we find first that

1..[a(y)A9Uo] = 0. (123)

The assumptions on a('y) imply
uo(X,y) = Uo(X) (124)

i.e., no V-dependence. The coefficients of e-I satisfy

'.. { [la~y) o] " + ja(y) 49Uo] - =y[a(y) uj]} 0 (125)

or
or ay a a 9 o (126)

If we look for ul in the form

uI(z,9) = -X(s/)-y l- + &,(z), (127)

then the corrector x(y) must satisfy

NO d dx9] da
+[a(y)+x() d (128)

R and be periodic. That is, dx (129)
a~y)T = a(y) + c(

which has a periodic solution (unique up to an additive constant in y) if and only if

7f1'[ 11 +- dy =o (130)

which implies

C - a[M(1 4, (131)

We obtain an equation for u0(z) from the solvability condition for u 2(z, Y). Equating the
coefficients of t° in the expansion, we have

57-[a(9) U21 - W-[a(ly)Tuj (132)

a a a ,' 1
ja~y)xI ax U01=f()

* V - ' -~ - - - 57yV~~*%\V TZ ~ Yx-Y- */.~
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This has a solution U2 (X, Y), periodic in y if and only if

IoOay)+ c du0(z) (133)
0 a(y) [ (y) ( ) - a(y) 'x(y)]d} " dz

+f(X) =0

where we have used (127). The integral of the second term is zero, since it is the integral of
the derivative of a periodic function over one period. Using (129) and (131), (133) reduces
to

- + f(X) = 0 (134)

(plus the boundary conditions) which is (118) (119).

4.1.2 Control and homogenization of the one dimensional system

One of the simplest stochastic control problems associated with the preceding system is
defined by the Hamilton - Jacobi - Bellman equation

.d u 1.zdul
-a(x) -b(-)-

'c'dX2  c Edz

- inf[1-v- 2 + g(z,y)v d u e - cut] (135)

x E O, u"(z) = oonr def 0

where 0 is an open interval in R, and each function a(y), b(y), and g(z, y) is periodic in
y with period Yo. We assume that a(y) > a > 0 and that c > 0, and that the controls v
take values in R.

This Bellman equation corresponds to the stochastic control problem

ul(z) = inf J'[v(.)]

J'lv(-)] -- Efo (Z"f-, V)[C- f d. dt} (136)

dz'(t) = o(ze, dw (t) + -b(z', )dt + G(z, z -,v)dt

X'(0) = x E Ot 0.

with C2 (z, y) =" a(y), b(X,y) = b(y), G(z,y,v) = g(z,y)v, l(z,y,v) = jv 2 , and c(z,y,v) =
c, a constant in (135). Each function in (136) is assumed to be periodic in i with period
one. We are interested in the behavior of the optimal cost and control law for (135) in
the limit as c --+ 0. The stochastic control problem (136) was treated in (Bensoussan,
Boccardo, and Murat [59]); the analysis here uses different arguments which emphasize
the computational aspects of the system.

ft. -- a ? : e¢ ; . r ;'€,; , 9
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Evaluating the infimum in (135), we have the nonlinear system

x l2 1 X
a(¥),=.. + -b(--), - cu' - -9g(z, '()2 =0 (137)

x E o, u'(x)Ir = 0.
The analysis of the control problem involves homogenization of this system.

Let
A, = a(y),9,, + b(y)8, (138)

with its formal adjoint defined by

A, = a1,[a(y)a,j - a,[(b(y) - a,(y)).]. (139)

The problemT poeAm = 0, y --* m(y) periodic (140)

> , m(y)dy = 1

has a unique solution m(.) on Y = SO, the unit circle, with

0 < m < M(Y) < M < oo. (141)

So m(-) is a density on Y. We assume that b(-) is centered

/y m(y)b(I)dy = 0. (142)

As a consequence the system
Ax(y) = b(y) (143)

Y -+ X(y) periodic, 4 x(y)dy = 0

has a well defined solution. x(') is the corrector associated with the problem.
As before we set y = z/c and look for ul in the form

U'() = ,,'(X,Y) = Uo(X,Y) +U(,Y) +..., (144)

and we use
aO(z,y) = Oz(z, Y) + # O,(, Y), Y = (145)

a,,,4(x, y) = ,s,,(x, y) + 2c,,i3 (xy) + 0.,,(x, y).

Substituting in (137), we have

a(y)iuo.. + 2cuo., + 12,=,,,, + a(y)[cu.. + 2u,., + C.1

+a(y)[ 2 U2  + 2C, 2,, + ,,V]

+ -b(y) [uo + IUo, ] + b(y)(Eu12 + 1 ,,] (14)

-V."



SEI-TR-86-14 37

+ by)[U2. + IEU2v] dIUO + IU1 + C2tU1

g2 (Z y) (UOz + CUIZ + E2 U2 ) + f (u0 Y + ctLIV + (2U2 y) ]2 = ( 2 )

The last term is
1()(2 12 2)(47

29g(~/)(jo + 2cuomuov + 2uoxuly + (147)

+(2uozu 1 2 + 2uiui, + 2uilU2. + 2UOz 22 )] + Q(C2)

Equating coefficients of like powers of iE, we obtain

1

(C-2 )a(y)uovI + b(jj)uo, - -g 2 (XIY)U 2 = 0 -(148)

(fC1 )a(y)uI,, + b(y)ui, + 2a(y)uozz (149)

+b(y)uo. _ g2 (X, Y) u0 3 U0 = 0

(C0 )a(I)u2 V, + b(y)u 2 , + 2a(y)u12 y + b(y)u12  (150)

t a(y)Uozz - CU0 - 2g(')2 g2 (Xly)uozuiz 0
20

Choosing uO (X,Y) = uo (x), which must be justified, satisfies (148). We can then solve (149)
by choosing

ul (X, Y) = -X(Y)uo.(x) + fiiM. (151)

Equation (150) has a solution for U2 (X,Y) if

im(y){-2a(y)Xvuoz - b(y~xvuoz + a(y~uo~z (152)
JY

2

This gives an equation for uo(x)

quoz2 - cur, - 2 O

where

q 9 m(y,){a(y)[1 - 2Xv(yi)] - x(y)b(y)}dy

r d Y m(y)g 2(, y)l1 - 2Xv(,)]dy.

Remark. From the definition of A, and the corrector x(i') we have

1m(y,)b(y,)x(y~di = [a(s,)xyy + b(i,)xv]x(i)m(i,)dy(15

f x(y)c8yv[a(y,)x(y,)m(y)]dy - Jf x(i/)8~vb(lI)x(l)m(y)dyl

y Y
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S Also, using (143),

J m(y)b(y)X(y)d( X(y)a(y)m(y)xv (y)dy (156)

-4 (y)b(y)m(y)X 1 dy,+ 2J X(y)Xvcyja(y)m(i,)jdi

Adding these two expressions, we have

=2J x(y)a(y)m(y)v dy+ 2f X(y)Xv[am]v d (157)

- 2 [Xamjxvdy+2J X(y)x 1am], d -2 Xa(y)m(,)xyd2

. Thus, q may be rewritten as

q = J m(y){a(y)[1 - 2 Xy + X]}dy (158)

f J m(y)a(y)[1 - x,]2d I

and clearly q > 0.
The term q in (154) summarizes the effects of the averaging process on the uncontrolled

system. The homogenization process interacts with the control system through the term
r, whose form would be difficult to "guess" from simple averaging procedures.

4.2 Continuum Model for a Simple Structural Mechanical Sys-

tem
4.2.1 Problem definition

Consider the truss shown in Figure I (undergoing an exaggerated deformation). We shall
assume that the truss has a regular (e.g., triangular) cross-section and no "interlacing"
supports. We assume that the displacements of the system are "small" in the sense that no
components in the system buckle. We are interested in describing the dynamical behavior
of the system when the number of cells (a unit between two (triangular) cross sections) is

large; that is, in the limit as Id.= /ef -.o (150)

We shall make several assumptions to simplify the analysis. First, we shall assume thit
the triangular sections are essentially rigid, and that all mobility of the system derives
from the flexibility of the members connecting the triangular components. Second, we
shall ignore damping and frictional effects in the system. Third, we shall confine attention
to small transverse displacements v(t, x) and small in plane rotations 0(t, z) as indicated
in Figure 1, ignoring longitudinal and out of plane motions and torsional twisting. Fourth,

It
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p~I0

_ __ .

I : Figure 1: Deformed truss with regular cross-section.

we shall assume that the mass of the triangular cross members dominates the mass of the
Ainterconnecting links.

Systems of this type have been considered in several papers including [1], [2] 131,
.. and [77]. In those papers a continuum beam model was hypothesized and effective values
. for the continuum system parameters were computed by averaging the associated param-

eters of the discrete system. Our approach to the problem is based on homogenization -
asymptotic analysis and is quite different.

The assumptions simplify the problem substantially, by suppressing the geometric
structure of the truss. We can retain this structure by writing dynamical equations for the
nodal displacements of the truss members. For triangular cross sections nine parameters
describe the displacements of each sectional element. The analysis which follows may be
carried over to this case, but the algebraic complexity prevents a clear presentation of the
main ideas. As suggested in (Noor et al. [1]) one should use a symbolic manipulation
program like MACSYMA to carry out the complete details of the calculations. We shall
take up this problem on another occasion; for now we shall treat the highly simplified
problem which, as we shall see, leads to the Timoshenko beam.

We shall begin by reformulating the system in terms of a discrete element model as
suggested in (Crandal et al. [27]); see Figure 2. In this model we follow the displacement

-• v r1(t) and rotation O,(t) of the i' mass M. The bending springs (k') tend to keep the
system straight by keeping the masses parallel and the shearing springs (k') tend to keep
the masses perpendicular to the connecting links. We assume small displacements and
rotations so the approximations s(

• .sin 4,(t) -  4,(t) (180) ,

are valid.

- .°4

, L. ' A. ._' ' %" %"•' . . " .J,' °''€'''' ;-. '. .'-', %' "' °° . S'"',' "% ' ; ". '.5 ,'%.%;,
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'rI

I '- I

Figure 2: A lumped parameter model of the simplified truss system.

In this case the (approximate) equations of motion of the th mass are5

"- ' ¢idto, "-l j{[/ +- 1~~ -7i(t) j
_,_ = + i )(t)} (161)
dt2  r

+l_$_{k'[, O+ l(t) - 46i)W

d2-' r .'.h '( - 1'+ 1t - O,(t)) (162)

where we have normalized M = 1 and defined
dfI.

Spr/i f [r/-I - r/, (163)

and similarly for St-4.
To proceed, we shall introduce the nondimensional variable e = t1L and rewrite the

system (161)(162) as

S. ~d 24~1
0' = K;{V'+i/'(t) - } + V'+{KbV"-40(t)} (164)

= - '[Vc17!(t) -• dt2

where
K.= kot,Kb = k't (165)

1 1 /,i - I/-1].

gThe spring constants depend on i since they represent the restorative forces of flexed bars, bent by
different amounts.

%"1

..- , .-.-.-...-. .. - .-.. . ,- - . . - .-.-. ,-.- . . -. _- ....- ,.- .. .. . . -.-.-.- ,-. ,-% . . .-. ,-. .,,-,., b .-. ,,
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aiNormalizing t = 1, we associate a position x E [-1/2,1/2] with each mass; and we intro-
duce the notation

v(t,z,) = r/,(t), (t,z,) = (t (166)

Having normalized t = 1, we have c = I and z,+1 = z + t = z + e. Let Z - {z) be the
set of all points in the system. In this notation

(V'+r/)(t,z) = l[r/(t,z + e) - 17(t,z)] (167)

1
nVi) (t, x) = [t1(t,x) - 1(t,x - E)],x EZ

and the system is

dt2

+ rV'+{Kb (z,) V'-' (t, xi)) (168)

d'(txj)- =

The scaling of (168) may be interpreted in the following way: Formally, at least, the
right sides of both terms in (168) are O(c- 2 ). This implies that the time variations are
taking place in the "fast time scale" r = t/e. Also, the spatial variations are taking place
in the "microscopic scale" z which varies in c-increments (e.g., z+1 = zi + c). Introducing
the macroscopic scale z = ez, and the slow time scale a = cr, we may rescale (168) and
observe its dynamical evolution on the large space-time scale on which macroscopic events

(e.g., "distributed phenomena") take place.
Rewritten in this spatial scale, the system becomes

d oc (t' zj") = K (zi'){b'+v (t, z.') - 0'(t, zxc)}
dt 2  

-

+ 6+' {rK (zi')-- '(t, z')} (169)

d2 r (t, zi) 1 f__ {K.()[7+/(t, zi') - W(t, zi)) (170)
.A dt 2  j2

where
V* = cV(* = 0(1) in c. (171)

The essential mathematical problem is to analyze the solutions 0, 17' of (169)(170) in
the limit as E --+ 0.

fo 4.2.2 Mathematical analysis

To proceed, we shall generalize the problem (169)(170) slightly by allowing K. and Kb
to depend on z as well as z/c. This permits the restoring forces in the model system to
depend on the large scale shape of the structure as well as on local deformations. We
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use the method of multiple scales; that is, we introduce y = Z/c and look for solutions of
(169)(170) in the form

r/t= P,(t,Z 't) = 0'(t,z, ), (172)

and we have
z

Ko = Ko(z,y),K = Ki(zy),y =

On smooth functions 0 (z, z') the operators 6(* satisfy

( Z')= Y ,(z + E,Y+ 1)- 0(z,Y)

= bz, Y + 1) - O(z, it) + O(z + C, it + 1) - O(z, i.+ 1) (174)

= (S+O)(z,Y) + (E -(Z ' +1 ) + f - (Z, + 1)o

(6 -)(ZY) = ,(z,Y) - ,(z - ,i - 1)

= ,(z,Y) - ,0(ZY - 1) + , (z, - 1) - ,P(Z - Iv - 1)
a O p 1 e2 0 P

21= (S-)(z, y) - IE Lo + 1) + 1 f-C ,

We assume that 011 and 1/' may be represented by

-tIZY) = 0o(t,z) + c$(t,z,Y) + ... (176)

71t, ZY) = 7 o(t,Z) + 071(t,z,Y) + .

and substituting (176) in (169)(170) and using (173) (174)(175), we arrive at a sequence
of equations for (00, 'lo), (-01, 'i),... by equating the coefficients of like powers of E.

Starting with c-, ,6 0 ,..., we have

-S+[rK(z,y)S-0o(t,z)] = 0 (177)
C2

which is trivially true from (175) (176). The same term involving vqo(t,x) from (170) is
trivially satisfied by the assumption (176). Continuing

-jS+{rKb(z,y)S-l(tzy)) (178)

+K.(z,y){S+i'o(t,z) - 0(t,z)}] = 0

which may be solved by using the corrector X,(z, Y) and taking

Z,,,) = X#(Z,)4o(t,Z) (179)

with
S+{rx ,(z,y)s -x#(z,y)} = K.(z,y) (180)

If we regard z as a parameter in (180), then there exists a solution X#, unique up to an
additive constant, if Kb(z, .), K.(z, .) are periodic in y, if there exist constants A and B so
that

0 < A <K(z,y) < B < oo (181)

d.
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and if the average of K,(z, .) is zero

f1 L/2 K.(,,)dy = 0 (182). [ -L/ 2

Let us assume that (181) (182) hold, and

0 < A < K.(z,v) < B < oo. (183)

TConsidering (170), the O(c1 ) term in the asymptotic expansion is

1
-[s-{K(z,y)(S+ijj(t,z,,) - Oo(t,z))}] = 0' (184)

Again we introduce the corrector X, (z,y), and take tr in the form

111 r(t,z,y) = X,(Z,)O(t,z) (185)

which gives the equation for the corrector

S- {K.(z,y)lSX(z, y) - 1]} = 0 (186)

or
s-{K.(zy)S'xn(zy)} = K.(z,y) - K.(z,y - 1) (187)

* By hypothesis the right side in (187) is periodic in y and has zero average (182). Hence,
(187) has a periodic solution, unique to an additive constant.

I',' Continuing, the O(cO) term in (169) is

S+{rKi(z,y)S-42(t, z,y)} + K.(z,y)[S+ih(t, z, l) - 01(t,z,y)]

a7q a
+ K.(z, y) - (t, z) + S+(188)(z,

a
+S+{rKb(z, y)00t Z, Y)} + -{rKe(z, y + 1)})-'O0 (t, Z)

-ya 2 a20.aZ2{o )}Oo(tz)- t,=,0.

This should be regarded as an equation for 0'2 as a function of y with (t,z) as parameters.
In this sense the solvability condition is as before, the average of the sum of all terms on
the left in (188), except the first, should be zero. We must choose 00 so that this in fact
occurs; and that defines the limiting system.

Using the correctors (179) (185), we must have

"A-erage+ {yK'(2-) -O-f2-0S+(rK(zy)) + S(K,(zy)x(zy))

- 94s0 a CI(l z ))] K. (z, yi) (189)

T 8

+,o ) Z

This ~ ~ ~ ~ ~ ~ ~~ .should-Z bef regarde ez<. Zn equtio Zor &Z<' asafnto fVwth(Z)aees
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~+ 1)) +

+ KD(z, y) ( + x,(z, y)- = o

Defining the functions EI(z), G(z) by the associated averages in (189), the averaged equa-

a2" -z8 (I 0z-) G(z) - H(z) Oo (190)

IMP_8t
2  az''' z + z

which is the angular component of the Timoshenko beam system (Crandall et al. [27] p.
348). •

Arguing in a similar fashion, we can derive the equation for the macroscopic approxi-
mation displacement of the lattice system in terms of the "equivalent" displacement ,70 (t, z)
in the Timoshenko beam system

: ,.-, 82,70 a 07

"z[N(z)(- z - 4)o(t,z))] (191)

4.2.3 Summary

We have shown that a simplified model of the dynamics of the truss with rigid cross
sectional area may be well approximated by the Timoshenko beam model in the limit as
the number of cells (proportional to L/I) becomes large. The continuum beam model
emerges naturally in the analysis, as a consequence of the periodicity and the scaling.B To compute the approximate continuum model, one must solve (180) and (187) (numer-
ically) for the correctors and then compute the parameters in (190) (191) by numerically

V. averaging the quantities in (189) (and its analog for (170)) which involve the correctors
_4% and the data of the problem.

4.3 Homogenization and Stabilizing Control of Lattice Struc-
tures

4 In this subsection we show that the process of deriving effective "continuum" approxi-
mations to complex systems may be developed in the context of optimal control designs

•~ for those systems. This procedure is more effective than the procedure of first deriving
homogeneous - continuum approximations for the structure, designing a control algorithm
for the idealized model, and then adapting the algorithm to the physical model. In fact,
separation of optimization and asymptotic analysis can lead to incorrect algorithms or
ineffective approximations, particularly in control problems where nonlinear analysis (e.g.,

of the Bellman dynamic programming equation) is required.

We shall apply the combined homogenization - optimization procedure described in
subsection 4.1 (based on (Bensoussan, Boccardo, and Murat [59])) to the problem of con-
trolling the dynamics of lattice structures like the truss structure analyzed in the previous
subsection. We shall only formulate a prototype problem of this type and discuss its
essential features.

p.

. -

v-a .
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Figure 3: Truss with transverse actuator forces.

Consider the model for the lattice structure analyzed in subsection 4.3 with control
actuators added. The truss shown in Figure 1 is again constrained to move in the plane

*: and torsional motion is excluded to simplify the model and confine attention to the basic
ideas. Now, however, we include a finite number of actuators acting to cause transverse
motions. The truss with actuator forces indicated by arrows is shown in Figure 3. The
corresponding discrete element model is shown in Figure 4.

Suppose that the physical actuators act along the local normal to the truss midline
as shown in the figures, and that the forces are small so that linear approximations to
transcendental functions (e.g., sin¢ - O4, etc.) are valid. Then the controlled equations
of motion of the discrete element system are (recall equation (164))

d2  K _ _K{V,+'7(t) - O(} + V {K6? ¢O(t) (192)

dt2 - -V {rK[V(7(t) - ¢(t)]} + b6(i, i,)ui(t)

where the notation in (165) has been used,

o i y
b(i,j) (193)

and ij,j = 1,...,m are the locations of the actuators. Hence, if 6(i,i) = 0 for all
j= 1, mm there is no actuator located at the it point which corresponds to the physical
point x E [0, L]. The number m of actuators is given at the outset and does not, of course,

*, vary with the scaling. The control problem is to select the actuator forces as functions of
the displacements and velocities of components of the structure to damp out motions of
the structure. Measurements would typically be available from a finite number of sensors
located along the structure. We shall not elaborate on this component of the model, and

ja~ '- '. ' j' .', ',.% %p ' %-% %-' % % %" '% % % ' o" " "" " " "- %" "" -"€'" ="".¢ " "- '- "" "" " a"; °-"
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I

7P7

L

Figure 4: Discrete element model of the controlled truss.

r
shall instead assume that the entire state can be measured. To achieve the stabilization,
we shall associate a cost functional with the system (192). Let

U(t) = [ui(t),.•., UP(] (194)

j be the vector of control forces, and

N

J'lu(.)] = j --{a[4(t)]2 + b,[r4(t)j

i r(+ aIL(t)]2 + i[t/(t) 2  (195)

+ E b(i, i.)u(t)}e- tdt

N where (a,, b,) and (al, /3) are non-negative weights. Formally, the control problem is to
select b(i, i,)u,(t),i - 1,.N.. ,JV, = 1,... , m to achieve

inf J"[u(.)] (196)
" )

subject to (192) (193) and the appropriate boundary conditions. The case - -y 0 corre-
sponds to stabilization by feedback.

The analysis of this control problem is based on the scaling used in subsection 4.3,
equations (164) - (171). Let r = t/ be the fast time scale, then

00 N
JIu(.)] = fo a. [ (r) 2 + bi(r) 2

+ +li 4IC[:(T)]2 (197)

* . . . . . . . . .

.* ~ , .,- .1
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in• + 6(i, ij)ts(r)}-tvdrL
j=1 _

with 0(r) = 4 (cr), etc.
Let (4,,ii) be the state vector of the system (192) with * = [,,.-,4N]T and

similarly for the other terms. Let V =V",(,4,,,) be the optimal value function for
the problem (192) (197). Then the Bellman equation associated with (192) (197) is

+ 1
N 1*+ =1 - $j gij - gj

N

min { 1 6(i, ij)ujV4, + 6(i, i)uJ]}
uE.4 i=1i,=i

N
+c [a,02 + b,,72 + C2 (ci, 2+ 3)]-cV=0I= 1

Remarks:
1. Note that the minimization in (198) is well defined if the admissible range of the

control forces is convex since the performance measure has been assumed to be
quadratic in the control variables 6(i, i,)u,.

2. Since we have not included the effects of noise in the model, the state equations are
deterministic and the Bellman equation (198) is a first order system. To "regularize"
the analysis, at least along the lines followed in conventional homogenization analysis,
it is useful to include the effects of noise in the model and exploit the resulting
coercivity properties in the asymptotic analysis.

3. If we introduce the macroscopic spatial scale z = cz, the mesh {zi}, and the variables

4(t,zi) = 01 (t),4,(t,z,) = :(t), etc. (199)

then the sums may be regarded as Riemann approximations to integrals over the
macroscopic spatial scale z. The asymptotic analysis of (198) with this interpreta-
tion defines the mathematical problem constituting simultaneous homogenization -
optimization for this case.

A ~ A ~ ~,%. A . AX %.{%V%{ .~\IV.1
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4.4 Effective conductivity of a periodic lattice

In this subsection we consider a version of a heat conduction problem treated by Kunne-
mann. Simple expressions for thermal properties of composite materials, have been derived
in the past using homogenization techniques. The derivation of effective conductivities for
discrete structures is useful for assessing the behavior of such structures in variable envi-
ronmental conditions.

4.4.1 Problem definition

Let Z = {0,±1, 2,.. .} and Z" = Z x ... x Z (d times) be a d-dimensional lattice. Let
c > 0 be a number small relative to 1. We want to describe the effective conduction of
thermal energy on the c-spaced lattice cZd. Let e = (0,0 .... 0,1,0,... 0 )T with 1 in the
ith position, i = 1,2, ... ,d. If z is a point in eZd, then z ± Eei, 1 < i < d, are the nearest
neighbors of z. Let a± (z), z E Z, 1 < i < d, be the two functions defined on the lattice,
and assume

a (z) t= a+(z) = ai_(z + e),z E Zd,1 < i < d (200)

,0 < A < ai(x) B < oo,Vz E Zd,I < i < d (201)

a (z) is periodic with period t > 1 (202)

in each direction, 1 < i < d. 6
i Next let

a:+(z) = ai( x), E ad,1 < i < d. (203)

Equation (201) means that the conduction process is reversible and that the conduc-
tivity aj(x) is a "bond conductivity," i.e., independent of the direction in which the bond
(X, z + e,) is used by the process. Equation (203) means that the configuration of bond
conductivities ai+ (.) on eZd is simply ai± (.) on eZd "viewed from a distance." Assumption
(202) imposes a regularity condition on the physics of the conduction process. An assump-

" tion like this is essential for existence of a limit as c -. 0. In one dimension the situation
is illustrated in Figure 5 and Figure 6. A system similar to this with random bond con-
ductivities was treated by Kunnemann [78] by imposing some ergodicity properties on the
bond conductivities.

One can associate with this system a random (jump) process

{X'(t,z),t _> 0,z E Zd}

on the c-spaced lattice.' In effect, as -- 0 , {X'} converges to a Brownian motion on
the lattice; and the main result of the analysis is an expression for the diffusion matrix
Q = [qij; ij = 1,2,... Id] of this process. This matrix describes the macroscopic diffusion
of thermal energy in the system. It is the effective conductivity.

'The period may be different in different directions.

'Denition of this proce is not necmary for the analysis, but it bolsters the intuition.
,%%
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Figure 5: Conductivity on unscaled lattice with period t = 6.

r : C v o -scaed l , y e x .

Figure 6: Conductivity on c-scaled lattice, y= zz E Z, period d€ = 6e.
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We shall carry out the asymptotic analysis of this system in the limit as e- 0 using
homogenization. Let

(V-,,)(x) _ -[,(X - fe,) - U(x)] (204)

( U:+,)(Z) [U .,,(X + EC,)- U,()

x E eZ", 1 < i < d,

for any u square summable on fZd or square integrable on X" with e the ill natural basis
vector in R". Then

au(t,z) d (
at f

=o Lx,,'(t,z)

is the diffusion equation on the c-spaced lattice with density u'(t,x) and conductivity
ai (z/). We are interested in an effective parameter representation of the thermal conduc-
tion process as E --+ 0.

Remark: Although probabilistic methods are not required in the analysis, the associ-
ated probabilistic framework has a great deal of intuitive appeal. The operator L, may be
identified as the infinitesimal generator of a pure jump process XI (a) in the "slow" time
scale a def C2 t (Breiman [63]). Moreover, V! is selfadjoint on iZd with the inner product

(f,g) -- F f ()g( ) "  (207)

Hence, the backward and forward equations for the process X'(8) are, respectively,

apC(,tlz)= [L'e(y,tl.)](x) (208)
at

~~aep' tl=) = -p(,tlx)](y)
c t

So the process is "symmetric" in the sense of Markov processes (Breiman [63]).
The asymptotic analysis of (206), when interpreted in this context, means that as the

bond lattice is contracted by c and time is sped up by E-2 , the jump process {X'(s)}
approaches a diffusion process with diffusion matrix Q. In other words, on the microscopic
scale thermal energy is transmitted through the lattice by a jump process; but when viewed
on a macroscopic scale the energy appears to diffuse throughout the lattice. The micro-
scopic physics are described in (Kirkpatrick [66]) and (Kittel [67]). The approximation
developed below for a periodic lattice is similar to the one developed by Kunnemann for a

" random lattice. This similarity demonstrates the robustness of the method, and the limted
dependence of the macroscopic properties of the medium on the details of the microscopic
variations of the structure.

Because the basic problem (206) is "parabolic," we can introduce the probabilistic
mechanism and make use of it in the analysis. In the "hyperbolic," structural mechanical
problems we treated before this device is not available.

S. *.
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4.4.2 Asymptotic analysis-homogenization

The essential mathematical step is to show strong convergence of the semigroup of L', say

Tr(t) def eL .__,T(t) 4Y eLt as i - 0 (209)

and to identify the limiting operator

d 12 (210)
1L =

This is accomplished by proving convergence of the resolvents

for a>0,[-L'+a]-'----L+a]-'as,--+ 0(211)

That is, if f is a given function and

Ut'(.) " [-Le + a]-If (212)

u(.) . [-L + a]- 1f

* then u' --+ u in an appropiate sense.
The method of multiple scales will be used to compute the limit. Because the conduc-

tivities ai(x) in (206) do not depend on time, we may work directly with V rather than
the parabolic PDE (206) (cf. (Bensoussan, Lions, and Papanicolaou [601) Remark 1.6, p.
242). The method of multiple scales is convenient because it is a systematic way of arriving
at the "right answers" - something which is not always simple in this analysis.

Bearing in mind (212), we consider

(L'u')(z) = f(x) (213)

with u' (x) in the form

UICz) = Uo(Z, ) + CuI(x, ) + C2U2 (X,) +... (214)

with the functions uj(x,y) periodic in y E CZd for every j =0,1, ... (As it turns out the
boundary conditions are somewhat irrelevant to the construction of "right answers.") To
present the computations in a simple form, it is convenient to introduce y = x/, to treat
z and y as independent variables, and to replace y by z/c at the end.

Recall the operators V7 from (206). Applied to a smooth function u -u(z, z/), we
have
h(Vu)(ae) = u(x - ce,,, - e,) - u(x, y) (215)

= -u(x,y - e,) - u(x,y)] + 1-Is(x - cei, y - e,) - u(x, y - e,)]

- (V;u)(x,z,) - -(x, - e,) + ' 1(x,, - e1) + o((2)
f1 I
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where on functions 4 =

(*)y) = O(y - e,) - OM (216)

Defining
w (V+)(y) = 0(y + e) - OM (217)

J we also have 1 Clu
(v.+u)(z,y) = U(Vu)(z,y) + a-i (z, y + e,) (218)

, l- e,) + O(IE2.

Now we substitute (214) into (213) and use the rules (216) (217). Equating coefficients
of like powers of c, this leads to a sequence of equations for u0 , u1, Specifically, (using
the summation convention)

(L'u')(x,y) = -V!-[a,(y)V + u']

V[(y)Vuo(x,y)_-V ()-(,y +,e)]
".11 81L0u°--

-V [a(y) 8-2 -- (Zi + ei)] + 0(C) (219)
2

--1~V-l, (y)V+,,,(x,y)]

-,V.-la(y) ')- (x, y + e,)] + 0(c)

-V- [a, (Y)+VtU(X, Y)] + o(C) = f(X)

That is, labeling each term by its order in

() V-,(y)V+ Uo] = 0 (220)

(C-) eV,-la,(y)-O (X,Y + e,)] + V;jaj(y)V+u(, y)] = 0 (221)

and (recall V. is 0(1) in c)

) C2 Uo ( 8u "

o- -io)" ( e),V- [aj(y) l- z (x, y' + e) (222)

.-V-,(y)Vtu,(xy)] = f(x)

From (220) we have
,,,(y - ej,)[uo(x, y) - uo (x, y - e,)J (223)

-a (y)1uo(z, y + e) - uo(, y)] = 0

..
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If we take uo(z,y) = uo(x), this is trivially true; and (221) simplifies to

CV-.!a(y)b 5 ()] + Vjaj(y)V'uj(z,)] = 0. (224)

At this point we introduce "correctors." That is, we assume

u,(d) Xk(Y)-X + l(X) (225)

i k-=1

with xk() the correctors. Using this in (224), we have (again using the summation con-
vention)

• t t o - * U0 o (26

V-[j~yV' k~y] -+ [ak(y I ) ak(3)] -x,= 26

If we take Xk (y) as the solution of

V.[ai(y)V, x(Y)] + 1a(y - c) - a (y)] = 0 (227)

(we have to verify the well-posedness of (227)), then (226) is satisfied. (The term ft1 (z) is
determined (formally) from the 0(c) term in the system (214) (219).)

-. Regarding the well-posedness of (227), note that

vi-[(Wvs( )] = O(y) (228)

S has a periodic solution on cZ which is unique up to an additive constant iff the average of
the function 0(y) over a period (d) is zero; i.e.,

def 1 L

= (y + keN) = 0,n = 1,2,...,d. (229)L0 k=1

This condition clearly holds in (227), and so, Xk(Y) is well defined (up to an additive
constant).

We shall determine the equation for uo(x) by using (225) (227) in (222). Using the
Kronecker delta function b5 k, we have

-[a,.,(Y)bi6,1 - V,[ai(y)xk,(y + e,)] = f ()
2 ' xOk 49Xik

1 V{jIa(y)b,&] - V-[a()V8 2u]) (230)

-Vi _ Y)Xk( ,) -o Viai(Y)V'U,] = f(X)

The term in braces is zero from (227). To obtain the solvability condition (229) for U2 in
(230), we introduce the average

1 dot

j = symmetric part (-V -al(i)x&(I,)]} (231)

S)
'p. 'U.
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Then solvability of (230) for u2 gives the equation

1 a2uo _

2 T - (Z). (232)

And this is the diffusion equation which defines the limiting behavior of the system (213)
in the macroscopic z-scale in the limit as c --* 0.

We can justify the asymptotic analysis by using energy estimates or probabilistic meth-
ods as in (Bensoussan, Lions, and Papanicolaou [60]). (See also Kunnemann lobal set key
[78]).) We shall omit this analysis here.

4.4.3 Summary

Returning to the original problem (206) for the evolution of thermal energy on a micro-
scopic scale, we have shown that the thermal density tu'(t, x) --+ uo(t, z) as e - 0 (in an
appropriate norm) where

"u0 1 _Ouo

& = 2 q % ---l - (233)

with

4 ,j{V ia(y)xt(y)] + Viad(y)xi(y)} (234)

with the correctors Xt, = 1,2,. .. ,d, given by

d
SV-[a.(y)Vxi()] -[ak(y - et) - akv(y)] (235)

~k = 1,2,...,d

To compute the limiting "homogenized" model (233), one must solve the system (235)
(numerically) and then evaluate the average (234).

The fact that the original problem (208) is "parabolic" (i.e., it describes a jump random
process), enables us to exploit the associated probabilistic structure to anticipate and
structure the analysis. In this way we can anticipate that the limit problem will involve
a diffusion process. In fact, the arguments used are entirely analytical and the limiting
diffusion (233) is constructed in a systematic way. It is not postulated.'

,'F

lProbabilistic arguments can be used (Bensousan, Lions, and Papanicolaou 1601, Chapter 3); and they
have some advantages.

me
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C.G

Figure 1: SCOLE Model

5 Examples

5.1 Continuum modeling for SCOLE problem

The SCOLE design challenge provides a useful baseline for comparison of continuum mod-
eling and control design for vibration problems typically encountered in large spacecraft.
The configuration is discussed in detail in [79] and consists of a large reflector antenna
mounted on the end of a long truss which is attached to standard pallet in the shuttle or-

,i biter cargo bay. The simplified model discussed in 184] includes a standard Bernoulli-Euler
beam model for the flexible truss and both the space shuttle and the antenna are modeled
as rigid bodies. Thus the problem can be considered as a "barbell" with flexible bar con-
necting the masses. In this section we provide a linear hybrid model for this configuration
by considering motion in a plane. The configuration is shown in Figure 5.1.

The required equations of motion can be easily derived from by application of Hamil-
ton's principle. In terms of the dynamic variables listed in Table 2 we can write the
Lagranian as

L(O,1,,, , ) ;=A (,A + (z + + / (236)
foL12~ / 2 a

1-E - rGA L 0 d
2LJ \az) 2 dz
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T torque applied to shuttle
a angular attitude of shuttle
r.G effective shear modulus of truss
p mass density of truss
A cross sectional area of truss
E modulus of elasticity of truss
I moment of inertia of truss
L truss length
ML, IL mass and moment of inertia for antenna
M, I mass and moment of inertia of shuttle (about: composite CG)
R distance from point of truss attachment to CG
z longitudinal coordinate along truss
7 i(z) lateral displacement of truss
O(z) angular rotation of cross section of truss

Table 2: Notation for SCOLE planar motion model

+I o' + -ML 2- + (L + R)O "+" - 8 L - +
21 2 \at +2 at 2

Then by application of the standard variational calculus 127 to Lagrange's equation,

d (aL\ e3L_

dta) aFq

the following equations of motion result. The Distributed Parameter Subsystem (DPS) is

a2  
_ aZ2 _ - - (z + R)i (237)

at2 ,. az az
a2 0 _ E a20 #cGA (L7 _ \
2 p az-i + - \aZ -  -

with boundary conditions

0(t,O) = 0, 0(t,O) = 0 (238)

t7(t, L) = 7L(t), 0(t,L) .= OL.

The Lumped Parameter Subsystem (LPS) is

,I+ML L+ILSL = KGA L1 1 z239)

+EI ( -T(t) (240)
a..' z.

J",

"W " - ,' .. .4'. .., " ",r,-. .'.,,v,. ," " ,",",",".% " " " ' .'W' " ', , . ',', .', "'''''S#
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66 00 = 0 ---

nIo = 0 DPS

IPIA

Figure 2: Subsystem interaction for SCOLE linear model

ML(L + R)b + ML L - r.GAOL = -KGA a7 (241)ML(LL

IL 6 + 0 - - (242)

The Distributed Parameter System (DPS) interacts with the Lumped Parameter Sys-
tem (LPS) at the boundaries as shown in Figure 5.1. For the purposes of illustration we
consider simplifying this model by assuming the shuttle mass is very much larger than that
of the antenna reflector.

5.2 Cantilevered Beam Models

A natural simplification of the above model is to assume the shuttle body is so massive with
respect to the antenna reflector that the vibration dynamics can be effectively studied by
assuming the shuttle is rigidly fixed in space. In this section we consider the 'cantilevered'
vibration model for a flexible beam with a tip mass. This is a standard problem which is
derived in detail in [27, pp. 348]. For control of cantilevered vibration modes we include a
control force at the antenna relector f,(t) which acts orthogonal to the longitudinal axis
of the truss in it quiescent state. We state the equations of motion as:
Distributed Subsystem

pA -1 a [ A( - 0)] (243)

a20 a 0 ])
P-I I + -- GA L _z (244)

"2q . .. . .'.

%
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Lumped Subsystem (at z = L)

MLL + KGA - L = fM(t) (245)

EI -OL + ILqL 0 (246)

and with boundary conditions at z = 0

17(t,O) = 0 0(t,O) 0 0. (247)

As in Section 3 we motivate the Euler-Bernoulli model by introducing the limiting
argument leading to the equations

,92n 1 49 a2 17
pAw __2E

12 aZ -a(E Zj2

with boundary conditions at x = L

MLL = El 3 + fM(t),

"E E 277 = 0
El8 2

at x =

7 (t,0) = 0

€= 0.

To illustrate the modeling techniques for hybrid systems and the computation of ef-
.q fective state space models we consider the 'long, thin beam' approximation discussed in

Section 2. For this simple example we will use the approximation (discussed in Section 2
as the 'string' model) in which the Timeshenko equations are reduced by neglecting the
rotation angle of cross-section 4 = 0 in (54). The model for the hybrid system consists of
equation (69) for 0 < z < L, subject to boundary conditions at z =L,

a 2 Y7 (t,L) Ay(t,L)
mL + cGA - f(t) (248)

at 2 49z

and at z= 0,A-
= a(t,0) =0 . (249)

Now (69) can be written in form (100)-(99) by a particular choice of distributed state:
ZXr(t,z) = [-, ,1]T where (69) becomes with a2 icG/p

a,7 (t, z) a-, (t, z)(20
i 8 gz

at 4z

, . • • * °° - ' I °." * , " -% . " " .P '.f. ." °'° ° . ,-..- ° % ..* ~ * °1 ° .. .- - ' " . .
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D:DPS

fd = t(t,L) fti = 'y(t,L)

LPS f.

Figure 3: A Hybrid Interconnection Model

Thus we write the DPS in the canonical first-order form (100)-(99)

a% Xd(t, Z) = a [0 a] 1 d(t Z (251)
at Oza 0

subject to
:. 1 0 00

1" 1 d(t,O0) + [ Xd (t,O0) = fd (t). (252)
. 0 0 0 11

To obtain a particular state space model for the lumped system we take the LPS state
as xt = [xtz,vi(t,L) T where the first coordinate is chosen to satisfy i (t,L) = xti(t) -

rA -(t,L). The LPS model can then be written as

00 0[ 0 1/rn]fi]1 0 xt)+ --0/amL 0 f2t(23

where P = icGA. Finally, the topological interconnection is resolved by an equation of the
form (105);

"i [fit] 0 [0 ]ft]i

ft + 1 0 Xd(t,L) + 0 xt(t)= 0

fd 0 0 0 -[ 0

We remark that for this example it is convenient (and relatively straightforward) to choose
the state coordinates for each model so that the interactions at their boundarys are simple.

N This provides some insight into the meaning of the individual state variables with respect
to the hybrid model as shown in Figure 5.1. From (249)-(250), we obtain the DPS Green's
function of (100) using (82)-(88) which can be simplified to the following:

.+ L.) + .ob (w + a - L) D.h . . a L) - Di. h '( + - L)

G, LEFT = "'k I Sib 1

pik -(.- a + L) 4 .h (+. - L) -C..( . + L) + coo +.(+ - )

G, RIGHT = -c .I(w- P
+ L)+ cob A (. + a- L Dinh or a 4 L) - 101. + a L

,3Mc

• " "" 7 - " ; " % " " " : " " """; " " " '" " " " " "" .-, - - '-.'- . -, --' -, -' -
';e ", "," %-". ' '., * " "," . -" ' ." .",'- - .' ,'-,'.'-,- ,-.' :.'-:' ,' .' .' ,"' "& " " " " "'" '"" """" '" "'""" 5 "



SEI-TR-86-14 60
S with

S Gr LEFT, 0 < Z < Wand GrRIGHT W <Z <L

cosh M
ta

sinh aL=B(, sinh
a

The final hybrid model can be written in terms of (106) by identifying the following
terms; from (109), the hybrid Green's function G, can be expressed using (109) given the
terms

s sin !- scosh" ME

-HtQiP B - sinh 5  cosh _ I
cosh !L _ mLS2 sinh ,L

-sinh I(w - z) -sinh A(w + z) cosh A(w - z) + cosh A (w + z)
-HBcQP= cosh(w-z)-cosh!(w+Z) -sinh(w-z) inh(w + z)

2sinh (cosh - ML82sinh!A)

From (108), we can write

["-mLS sinhL - cosh aL

--mL sinh - -mLS cosh !-L
I- MLcoshLA -mLS cosh--

R(8 z :. M L sinh EL t'L cosh--

R(s~z) -a aML
cosh !Z - mL8 2 sinh !L

Finally, from (111)
-a cosh °Lcosh 1

S. a-

-mL-52 cosh °-I
_--mL S2 sinh M j

/, z cosh a - mLs2 sinh ._

The above calculations were carried out using SMP. Some considerable algebraic re-
duction was necessary to achieve the final forms.

5.3 Control Design for Simply Supported Beam

For illustrative purpose the control design for a simply supportted ('pinned-pinned') beam
is considered in some detail. Continuum modeling begins with standard Bernoulli-Euler
beam equation. We develop a canonical, first-order form and identify suitable state space
coordinates and identify boundary conditions which places the model in the canonical form
discussed in Section 3. Computation of the required frequency response requires numer-
ical evaluation of various transcendental terms. Numerical aspects of this are discussed.

a..,..i ; ;.:.;' ; .:> ? .; ..'..: h.;...-:;/ ..7: .;..:. . ' -' ...;' .<./. :., . .;.
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Finally, a distributed control is computed by the method described in Section 2. We high-
light the computational aspects of the procedure and, in particular, the use of a symbolic
manipulation, computer algebra system to support the modeling and control design.

Testing of the distributed control law proceeds in the frequency domain. This is an
advantage of the approach since frequency response data is directly available as part of
the modeling and control computations. The ultimate concern for design of active control
of elastic structures in space is to provide adequate stability margins in the face of the
inevitable model uncertainty. The most standard methods for testing stability and assess-
ing the robustness of control laws involve frequency domain tests. Such tests (based on
Nyquist stability theory) are firmly based in engineering practice and proven reliable. The
inherent robustness properties of the standard formulation for linear, quadratic optimal
control which rest on frequency domain properties of the control law can be readily seen in
this framework. It is essential for control of distributed parameter systems where computa-
tions will inevitably involve approximation that any degradation of the resulting stability
margins be ascertainable in advance for the control configuration including sensors and
actuators.

5.3.1 Continuum Modeling and State Coordinate Selection

The 'pinned-pinned' beam is shown in Figure 5.3.1. The beam is modeled by a simplified,
dimensionless form of the Bernoulli-Euler equation;

a172  a3, a7C1 V
o -

2  _ +ta , (254)

where the Chen-Russell 'square-root' damping is included for material dissipation and
(254) is subject to boundary conditions at z = 0

ui(t,o) = 0 (255)

(no lateral displacement)
a = 2 0 (256)
az2 I.ao

(no restraining moment) and at z L a control torque r is applied,

v(t,L) 0 (257)

a2  r (258)
aZ2 aL

Writing (254) in the form

identifies a new state variable -1 and we write (254) in the form

-dz (259)
2- dl(26)

df (it d

.s

# V
4

I ,° °,. . . #.'
I4
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Figure 4: Simply Supported 'pinned-pinned' Beam

Now solving for 'in (260) and subtracting from (259) gives

- 2 82 z2 (261)

With the choice of state coordinates as z = (, 7 , )T we can write (259) and (261) in the
canonical, first-order form as

-4.2
82 (o 1- (262)

j The boundary conditions (256), (258) involve moments and can be written in terms of the
state coordinates from (260) as

-(t,0) - 2Y(t,0) = 0 (263)

-y(t,L)- 2s'r(t,L) = jr()da; (264)

i.e., as discussed in Section 3 a generalized forcing function (torque) is evident and the
integration in (264) is essential.

Z Finally, the equations (262)-(264) can be written in the canonical form (92), (93)
identifying the matrix parameters,

C -1 2)'FO H ,E

1 0 0 0
E 2" -1 0 0

-- 0 0 0
0 0 2 -1

E2 r3 = oD :10,0o,0, f/ I1'

Numerical evaluation of the required frequency response data for the model in the form
(81) proceeds from (95)-(99). However, direct evaluation can lead to numerical instability

,.q,
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depending on the required bandwidth. To see how the numercial instability arises we focus
on the transfer function from the boundary control (torque at right hand end of beam) to
the distributed state;

which consists of two terms; viz.,

~(s, z) h,(,z)f()

=(sz) h.,(sz)f(s).

An independent analysis shows that these transfer functions can be written as

h,7 (a,z) sinh \ 2z sin AIL - sin A;z sinh \ 2L
(\ + \) sin ,lLsinhA 2L (265)

yh. ,(8,z) = - i_/i"7'I) sinh I 2z sin L - ( + iV/- ) s-in Az sinh 2 L (266)
S(4\ + \2) sin A1 Lsinh A 2 L

with

4\[ (-- C2)S, (267)

2,\2 (+i 1C2)8.

Clearly evaluation of these transfer functions at s = 0 by direct substitution leads to
indeterminant expression 0.

At this point a computer algebra system (SMP was used) is most useful for analysis.
The system can answer the question "is there a singularity in h,, at s = 0?" For a -- 0
we can also let C -- 0 which implies A1 = A2. Then SMP can readily perform the required
power series expansion about s = 0 as shown. The result clearly demonstrates that the
singularity is removable. A similar analysis for h., shows that this term has a first-order
pole at a = 0 which confirms that the generalized torque input to this model is required
for the 'new state' coordinate and is not physically evident in the lateral displacement
coordinate.

Clearly, numerical evaluation of the frequency response data from this model near
- = 0 will be numerically sensitive. We have found SMP a (somewhat) convenient tool for
generation of Fortran code for numerical evaluation of these expressions. For evaluation
near a = 0 we use SMP to generate the required power series expansions and automatically
generate Fortran expression for their evaluation in 'low frequency' regions.

5.3.2 Evaluation of Frequency Response Data

In this section we demonstrate a general approach to evaluation of frequency response data
for such beam models which

1. separates the integration associated with the generalized torque input to the model

2. identifies a reduced set of transcendental terms which can be analyzed independently
for numerical stability and from which all frequency response data; viz., HBC, Gr,
can be computed.

V,.* L
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Using the symmetry of the boundary conditions for this problem a further simplification
results.I Equation (95) can be written for the 'pinned-pinned' beam as

A= ] (268)

where

.sG-= 2 s 0 s

As discussed in Appendix A we find it convenient for algebraic computation of the matrix
exponential -(s, z) = esA to use a Cayley-Hamilton expansion;

t (s,z) = vPo(s,z)14 + i(s, z)A + 2 (8, z)A2 +0P3(8,z)A3 . (269)

The Faddeeva algorithm (see Appendix A) is used to evaluate the scalar terms yielding,

(A - 2 s)coshA 2Z+ (?- 2 s)cos ,1z
(1, + \2)2

-L(,\2I +A _ 2s) sinh\I + (,\

.1 ( + 2s) sin , + , 2s) sinh \ 2Z (270)
cosh A1z - cos Az

sinh \2Z - -L sin \Iz

'3 2 + A

where AI, A2 are given in (267). These terms include all transcendental terms involved in the
computation of HEc, G,. Numerical stability is an issue which can therefore be determined
independently for these expressions. We also feel that this approach may suggest alternate
methods for approximation of transfer functions by rational approximation. Such methods
may yield efficient and numerically stable schemes for frequency response modeling.

The model equations (95)-(99) for this case can be written in a simplified form by
exploiting the symmetry of the boundary conditions. From (268) we see that

A 2 -sG-I 0-

A30 -sG - 1

-8G - 2

. so that using (269) we can write (95) in partitioned form

' (.s,z) = [ 02 (271)

IfP

%S
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where

0 1(.4,z) = 012- -92G
- 1

[ wo(a,z)+ 2002a(S, z) -. 8 2 (,z) (272)

a n d I0 8 , Z ) 0 k (s , Z ) ( 2 )

0 2 (s,z) = 0 112 -,80 3G - 1

[ ¢,(s,z) + 2s0 3 (s,z) -8k 3 (s,z) (273)
I. . (S, Z) tki(s,z) -(

At this point symbolic algebra system (SMP) was used to evaluate the limits of the
elements in these matrices as a --* 0. The SMP session is reproduced as follows:

SMP 1.5.0
10-DEC-1986 10:56:02.05

\* the matrix phil is parametrized independent of a
#I[11:: phil[s.z]

2 1/2 2 1/2
# ) cl Cos[cl a z] + c2 Cosh(c2 s z]

2 2
• - cl + c2

1/2 1/2
CoO[cl s z] - Cosh[c2 a zJ

2 2

cl + c2

-9

.d

. .

. _ :
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1/2 1/2
-(Cos[c1 a z] - Cosh[c2 a zJ)

S{-------------------------------
2 2

cl + c21/2 2

Cos[ci s z] (2zeta + cl )

1/2 2
- Cosh[c2 s z) (2zeta - c2 )

2 2
cl + c2

#1[2]:: tmp:%;
\* rs2 is substituted for a prior to evaluation of the limit *\
#1[3):: tmp:S[tmp,s->rs-2]

2 2
cl Cos[cl rs z] + c2 Cosh[c2 rs z] Cos[cl rs z] - Cosh[c2 rs z]

#o [3] : .. . .. . --- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

2 2 2 2
ci + c2 ci + c2

-(Cos[ci rs z] - Cosh[c2 rs z])

2 2
cl * c2

2
Cosc1 rs zr (2zeta * ci )

- Cosh~c2 rs z] (2zeta - c2 )

2 2
ci + c2

#1[4]:: tmp[1,12

2 2I
cl Cos[cl rl z] * c2 Cosh[c2 rs z]

#0 [4 ] : ------------------------------------

2 2
ci + c2

Ao

za t.
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\* find the limit rs->0 for the 1.1 element of pail *

\find limits for each element of pail *
#1[6):: tmp(1,2J

Cos(ci ra z] - Cosh~c2 ra z)
#0[61: - - - - - - - - - - - - - -

2 2

ci + c2I

#0[7]: 0

#1[8):: tmp(2,1)

-(Coa~cl ra z] - Cosh~c2 ra z])
1.#0(81: - - - -- - - - - - - - - - - -

2 2
ci + c2

#1[9):: Lim(%.re.O]

#0[91: 0

p #I11:: tmp(2.2J
2 2

Cos~ci re zJ (2zeta + ci Cosh~c2 ra z] (2zeta -c2)

#0[10]: - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 2
ci + c2

Z4 #1(11]:: Lim(V%rs.0J

00(11]: 1
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\* perform similar limiting analysis for psi2 *\
#1[12]:: tmp:S[phi2[s.z] .s->rs-2]

2zeta (cl Sinh[c2 rs z] - c2 Sinh[cl rs z])

- cl (2zeta - c2 ) Sinh[c2 re z]

2
+ c2 (2zeta + cl ) Sin[ci rs z)

#0[12]: {{ ------------------------------------------
2 2

cl c2 rs (cl + c2 )

Sinh[cl rs z] Sinh[c2 rs z]

cl c2

2 2
rs (cl + c2 )

Sinh[cl rs z] Sinh[c2 rs z]

cl c2
-------------------------------

,- 2 2
rs (cl + c2 )

-(cl (2zeta - c2 ) Sinh[c2 re z]

2
- c2 (2zeta + ci ) Sin[c1 rs z])

2 2

* cl c2 rs (cl + c2 )

,'V

oS
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#1[13]:: tmp[,1]

2zeta (cl Sinh[c2 rs z] - c2 Sinh[cl rs z])

2
- cl (2zeta - c2 ) Sinh[c2 rs z]

2
+ c2 (2zeta + cl ) Sin[ci rs z]

#0[13):
2 2

cl c2 rs (cl + c2)

#1[14]:: Lim[,.rs.OJ
2 2

cl c2 z (2zeta + cl ) -cl c2 z (2zeta - c2)

#0[141:
2 2

cl c2 (cl + c2 )
\* factor the resulting limit to simplify *\
#I1[15] :: Fac [%]

I #0[15): z

#1[16):: tmp[l,2]

Sinh[cl rs z] Sinh[c2 rs z)

cl c2
#0116):

2 2
rs (cl + C2 )

~#I1[17] :: Lim[%,rs,O]

#0[17]: 0

. I.

I

' " ,2
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, #I[18]:: tmp[2.1]

Sinh[cl ra z] Sinh[c2 rs z]

cl c2ii #0(18]:

2 2
ra (cl + c2 )

#1[19]:: Lim[%.rs.0]

#0[19]: 0

#1[20]:: tmp[2.2]

2 2

-(ci (2zeta - c2 ) Sinh[c2 re z] - c2 (2zeta + cl ) Sin~cl re z])
#0[20):

2 2
cl c2 ra (cl + c2 )

#1[21]:: Lim[%,rs.0
2 2

-(-cl c2 z (2zeta ci) * cl c2 z (2zeta - c2 ))
#0[21]:

2 2

* . cl c2 (cl + c2 )
#1[22):: Fac[%]

#0[22]: z

#1[23]:: <end>

Now from the symmetry of the boundary conditions we can write

AE+ rt A A02 (274)

where

A (1 0)

It is easy to see that

I- + ]tl- 2
[s r]_ oA
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From (96) we write

M~sz) = I(s,z),¢2(s, z)1 [L)A $2(s,L)A
= [M(s,z),M2(s,z)]

where

M(s,z) = (.,(s,z)- 2(sz)¢1(s,L)4,(s,L)) A (275)

M 2(s,z) = 4 2(s,z)4t2(s,L)A.

Finally, from (275) write (99) as

HBC(S,z) = 0 2(,z)4tl 2 (s,L)A 1 0 (276)

Substitution of (271), (275) into (99) yields

GLEFT(S;Z,W) = - 2 (S,z)02 1 (s,L)4 2 (s,L - w) (277)

G, RIGHT(s; z, w) = [ l(s, z) - 4P2(s, z) 1 (s,L)41,(s, L)] 02(8,-w). (278)

Numerical evaluation then proceeds by evaluating the transcendental terms (270).
Substitution into (272) and (273) is followed by 2 x 2 matrix calculations (276)-(278).
Figure 5.3.2 displays 3-dimensional frequency response data for the terms in HBC. The
integration in h,. is evident in the response at w = 0.

5.3.3 Distributed Control Computation

The optimal control problem described in Section 1 is now completely specified by the
choice of a quadratic objective which can be alternately specified by the choice of a linear
operator C )(fl) --, R' as in (7). Candidates for C are:

1. projection to a modal or other ROM, finite-dimensional subspace of N (fl) as discussed
in Section 2

S.. 2. "point" control objective given by the operation

YWt fJ x(t, z)b(z - zo)dz

3. weighted, state cost
y(t) =f x(t,z)w(z)dz

For this problem we chose a point control objective with the observation or control point

at z = L/2. It should be noted that this choice does not suppress the fundamental difficulty
of computations for distributed parameter models by employing ROM approximations. As

we shall see the numerical problems are quite complex even after we have assured ourselves

.%I

.,, . ," *, , ,g f , , -%€. -, -. - ., . , , , .,, .". , - , ,-.-.. .. ..., ,,. .. ..,.,, . .. .. .
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Figure 6: Nyquist plot for 1/F(iw) for beam control computation.

by various tests that the numerical evaluation of the irrational transfer functions involved
can be performed with the required precision. With this choice the transfer function is

G(s) = HBC(s,z = L/2)

and we must factor
~I+ G*(iw)G(iw) = F8(iw)F(iw)

to find its unique, causal spectral factor F(iw). Using the frequency response model
described above and the spectral factorization algorithm discussed in Section 2 we compute
the quantity [F"(iw)]- 1 which is in this case a complex scalar valued function of w. The
result is shown in Figures 5.3.3-5.3.3 with 500 samples computed over the frequency range
from 1.0 x 10-10-1.0 x 103.

Two observations can be made from the resulting spectral factor which help to confirm
a its validity. First, from basic principles of linear, quadratic control it is known [23, pp. 71]

that the unique causal spectral factor is

F(s) = I + K ,pR(s; A)B

and enjoys the property IIF(i,,,)lI > 1 Vw E R. ,

Clearly from Figure 5.3.3 we see that IF-1 (-iwH < 1 consistent with this property. Second,
by choice of control observation at z = L/2 we see that all symmetric modes in Hvc do

A,
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Ik-mode frequency (rad/sec)

1 9.870
2 39.478
3 88.825
4 157.912
5 246.730
6 355.301
7 483.605
8 631.647
9 799.428
10 986.950

Table 3: Mode frequencies for pinned-pinned beam
Il.

not contribute to G(s). From (265)-(266) it can be shown that the poles in HEc occur at

Sk = -ck 2L7r 2 ± i1Vr - C2k2L27r2

for k = 0, ±1, ±2,.... For these computations we have used " = 0.005 and L = 1. The
N' first ten modal frequencies are shown in Table 2. The odd numbered (the anti-symmetric)

modes only appear in the spectral factor as can be seen in the figures.

The distributed gains are computed according to (22) by numerical quadrature (trape-

j zoidal rule). The resulting gains are displayed in Figure 5.3.3. The gains are discontinuous
at the point of observation due to the discontinuity in the gradient of the Green's function.
A major issue in this computation is the numerical precision obtainable by integrating
over a finite bandwidth. The bandwidth used for this calculation is wo = 1000-the same
as used for spectral factorization. Examination of the magnitude of the resulting spec-
tral factor indicates that with the material damping model used that this bandwidth is
reasonable in that the 1 0 th mode is just descernable (in double precision) in the spectral
factor. Examination of the phase response indicates however that significant phase excur-
sions are still obtained at high frequencies near modal frequencies. This phenomenon can
be explained in terms of the characteristic interlacing pattern of poles and zeros for this
class of transfer functions [24,30]. Because the observation point z = L/2 is not 'colocated'
with the control point z = L the transfer function will have nonminimum phase behavior.
This seems to lead to poor convergence of the distributed gain computations. Figure 5.3.3
displays the convergence of two selected points of the distributed gain

Kdi.(W) 1 foo IF'(iw)]-G'(iw)CG(iw;z,w) dw

with bandwidth wo. Clearly convergence is poor as the bandwidth of the integration is

increased. The effect of the rapidly varying phase is apparently significant.
The final test is to essentially 're-compute' the achieved spectral factor with the com-

puted Kdi,. This-in effect-simulates a situation where the distributed state feedback
is implemented by an array of (in this case 100) sensors uniformly distributed across the

- q
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Figure 11: ideal F(ow) - Nyquist plot

Nbeamn measuring both components of the state. The feedback control law is computed

by numerical quadrature. It is convenient to compare the spectral factor F(sw) comn-

puted above and displayed in Figure 5.3.3 with the 'achieved return difference' F.(sw) =

I + fL K& .(w)HBc(iw,w)dw displayed in Figure 5.3.3. Figure 5.3.3 shows the character-
istic behavior of the ideal spectral factor with respect to the critical point at a = 0. The
Nyquist contour avoids the unit disk centered at the origin. In Figure 5.3.3 the achieved
Nyquist contour indicates a phase error at low frequencies and for higher frequencies it ap-

5, proachs the critical point rather closely. The resulting control loop will be only marginally
stable, will sustain a highly underdamped oscillation at some high fequency and will be
extremely sensitive to modeling errors and component changes.

At this point the above negative result seems to indicate a fundamental numerical
sensitivity associated with the choice of 'point' control as an optimzation objective. It
seems clear that by projecting the cost onto a finite dimensional ROM subspace will lead
to a much more tractable problem since the integration can now be performed over a
known finite bandwidth thus assuring convergence. Of sourse as discussed in Section 2
this is equivalent to solving a finite-dimensional control problem for the ROM model so
that standard methods could be applied.
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S 6 Conclusions and Directions
We have considered modeling of flexible structures for the purpose of computing con-I trol laws for distributed parameter systems. We have considered both classical modeling
approachs based on frequency domain analysis for well defined elastic components and

homogenization for obtaining effective continuum models for periodic structures.
A complete method for computation of distributed control laws based on a standard

* Wiener-Hopf problem has been demonstrated. The method can, in principal, provide
optimal, distributed state feedback control laws for systems which are open loop stable. In
practice, numerical and other computational considerations serve to limit the effectivenesh
of the method to problems with well defined bandwidth and dainping which provides
a uniform exponential rate of decay for essentially all modes. Although methods were
developed which can reliably determine appropriate irrational transfer function models for
composite structures it was seen that computation of the system frequency response from
such transfer functions can quickly suffer from numerical instability outside of a rather
limited bandwidth.

It was shown that the proposed method embraces the standard notion of distributed
control by reduced-order approximation by definition of ROM control objective. For this
case the major advantage of the method appears to be the numerical approach which
avoids the solution (at least explicitly) of large dimensional Riccati equation. Of course,
as discussed by Davis [161, it is often desired to penalyze only those modes which are
physically significant for the design at hand. In our experience is ultimately required to
make such a restriction for the purposes of the numerical computations. The method of
computing distributed gains is itself rather sensitive and apparently is limited in practice
to computing control laws for only a finite number of modes.

The frequency response method is particularly appropriate for control system design
and system performance can be ascertained in advance without recourse to simulation. By
comparison of the ideal Nyquist contour for the optimal problem with various potential
implimentations of distributed state sensing resulting stability and robustness properties
can be seen graphically. A major difficulty with practical design of distributed state feed-
back is that an array of sensors spatially separated from the control points will ultimately
be desired. Current advances in technology offer several opportunities for relatively low
cost alternatives for such systems. However, whenever sensors are spatially separated from
actuators for such systems the resulting transfer functions are nonminimumn phase. Such
an effect is definitely configuration dependent and results from actuator and sensor posi-
tioning but has a dominant effect on the ability to provide robust and high performance
control laws.

It is significant to note the success of the spectral factorization computation for the
problems considered. The algorithm is quite general and includes the case of multiple
controls where the required factorization is for a matrix function. Application of this
approach to the computation of output feedback control laws for distributed systems is
considered in detail in [24]. Unlike the case of finite dimensional systems the output
feedback design methods we have tested do not involve explicit distributed state estimation
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from sensor measurements. This is a difficult problem which definitely requires ROM
approximation for on-line computation. Instead we make use of alternate state realizations
for a given transfer function which in many cases consist of delay-differential equations
rather than partial differential equations. These equations are quite easy to include in real-
time control software. Alternately, if such realizations cannot be found we can often realize
the control by general purpose, real-time convolution. Such an approach is particularly
significant given the increasing availablity of extremely high speed special purpose LSI
chips for signal processing. Examples of these include Digital Signal Processing (DSP)
chips and Fast Fourier Transform (FFT) chips.
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HA Algorithms and Code for Symbolic Manipulation

*A central goal of this project was to investigate the use of a symbolic manipulation (com-
puter algebra) language to support the required model building computations. We used the
language SMP throughout this project. The goal was to automate-as much as possible-
computation of the required frequency response models and to setup the equations in a
form suitable numerical evaluation. Finally, the language should support the automatic
generation of Fortran code which can then be linked with the required procedures for
spectral factorization and optimal gain computation. The main feature of the algebraic
approach is to evaluate the expressions symbolically and therefore carry through certain
model parameters. This feature is quite useful for generic model building but there is a
penalty in that complexity of the resulting expressions can limit their utility while limiting
the computational speed and effectiveness of the computer algebra system.

The first step was to build a system shell in SMP with menu-driven, user interface
which can aid the novice user. The more experienced user could then access the required
SMP procedures directly. As with any computer algebra system proficiency comes only
with practice and many seemingly straightforward computations can lead to undesirably
large expressions. Simplification is often tedious requiring not only skill with the special
algebraic relations required but also the language syntax and operations for symbolic iden-
tification of parts of expressions. The system shell we implemented included the equations
for computation of the boundary transfer function and Green's function for both the hy-
perbolic and parabolic forms developed in Section 3. We also included the equations for
computation of hybrid coordinate models.

An essential computation for these equations is evaluation of a matrix exponential. We
found it convenient to use an algebraic relatioxi based on the Laplace transform and the
Cayley-Hamilton theorem for matrices. The relation is commonly credited to Leverrier-
Souriau-Faddeeva-Frame [85, pp 658]. The formulae are developed as follows. Given an
n x n matrix A the characteristic equation is

WrA(8) = det[sI -A]

= ao+ais+...+a_ 1 s" - I + 8n .

Then the Cayley-Hamilton theorem says that

IA(A) = 0.

The matrix exponential

can then be written as a finite sum;

_At = Ztkk(t)A .
k=O

' . *
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The coefficients can be computed as

p ik&(t) = ri f A A(8) ed

for r a smooth, closed contour enclosing the spectrum of A and where the polynomials
x()9)are generated recursively according to

rj ()= s~r(j)(s) + a, i7r ()

~ with

The contour integral is the usual Laplace transform inverse which can be evaluated by
~ residues. Most available computer algebra systems (e.g. MACSYMA, SMP, REDUCE)

can perform the calculation by explicit partial fraction expansion of the rational integrand
in combination with certain tables for standard inverses. This approach was programmed
in SMP and tested. It proved considerably faster than the direct approach; i.e., compute
e~l by inverse Laplace transform of the n x n matrix [.1 - A] 1 .

SM? offers the facility for 'tuning' automatic simplification of expressions by adding
'rules' which are automatically applied at each computation. We investigated this feature
for automatic simplication of the transcendental terms generated for transfer function com-
putation. Unfortunately it proved to be difficult to determine a set of algebraic rules which
would always lead to "desirable" reduced forms. An alternate approach we found useful
was to build special simplification procedures in SM? for various steps in the computation.
These procedures could be applied manually to resulting expressions. They could also be
applied with the 'MAP[]' operation of SM? which recursively applies a set of procedures
until the expression does not change. This can lead to indefinite recursions for certain
expressions. In conclusion, we found that SM? offered several features which were useful
for expression simplification but no automatic procedure could be developed which would
always lead to a 'nice enough' expression that the knowledgable human could not ask for
more. In the final analysis computer algebra is a tool for experts-not (in the current

7A jargon) an expert system!
One aspect of computer algebra that we found most useful on this project however is the

use of standard expansions for generating alternate expressions for numerically evaluating
the required irrational transfer functions. This was an essential task and the understanding
of the numerical stability properties of transcendental terms absorbed a major portion of
this project. In order to make a computer system ultimately useful to engineers it will
be necessary to include specific provisions for numerical testing and analysis. Coupling
this with a feature for automatic Fortran or C code generation should provide a useful
tool for advanced model development and analysis of mechanical systems. The feature for

w'. automatic Fortran code generation was not fully debugged in the version of SM? that we
used. We were able to compensate for most of the bugs with a programmable editor (Gnu
Emacs).

The following code is the SM? system shell we developed for this project. It includes a
menu-driven, user interface containing all the required equations for computing the transfer
function models for hyperbolic, parabolic, and hybrid configurations.



Menu Driven Programs
• Main Menu
• Distributed Parameter System (DPS)

Lumped Parameter System (LPS)
* Hybrid System
* Parabolic System
* Incidence Relations
* Cost Definition

U

- ', '%~*



c'

C 2

0:41

AL Ato

oB' c -C 04
a* b 0 V

0 L cUo

o *0 CCOO

C C . 0- . - AJ - a9 .o a10 6. d 417-,. a* A- S 1 +

a. u91 IL U V U
0* 9-uON0V

. L. LAZ.

ccI 41 %. U A. cc~ M D A AC ACSC aa6 -. -1 z0 01 a +

C UC 3 L %dzC . 1 S S - Uo 2U I @ 25 .0 *-5c 2C6. + x 5 0 C - O - 0 34a CU L. 5- 'U Lo A d

x .- ) a +
C~~ C x a Ux%5 -E

a - - .0 I 0 . x a, - L .LL a x 20- 6.CZ 0~6 I
C0 .0M V x 1.0O - -4 41 uS I

S . -. m 05 41 de S IS -. "a 1 -. . ~0 C6. A U . 0 C C N0 0.4 IS 5c - S6. C 3 0.- 4a - L 0 0 0 5. C1S4 1 C

C . - 0 0 . a 0.
@6Lf 3 10 --- O C. C O. M.

41 *C4 z14 4 -C5 - LA 0.0 ci L

6.0 o %o N. CC&
3% 40. L 'o 0 0 41 C

16 .. S- IU 0 a- CLc. I 5

If LG *6 6.
0 0 4-. *% I.. 0. 40 xI( 0o 0

'~~~. C L'~ V t. .. 902 IX . *.d .



aSo I

*0 Ita

a. a. I I

00 a 
a aa

go ai 0 0.* '

4) I c a

Oc a 0
aU 0 a a
Lc*4 a L. a U) a 0L I4) . a.a2
4I au- a- a 1

-, t 06.4 .aO a a 0c .tOI a IL 1 2 16 6 -0 01 C a v a .0 a; a 0 1z 'C 0-2 am .; = a a 0 1 z
I0 axI 0 Ouu 01o 4). W CUI

42 0.! . a a L9L- c a* a
0i uC- . a1 -a * C0 1 ::! = a-;;=% !

a 2 0 0 63
-3 1.2 I L c C 4) 04) 0 aco a ca

A C4 0 C 1)0 u c - a ~ a 1
-0 .L a 0uua'03-@. 1. 1 gi-o

L .C4 a -. ~ ~ @ I ~ I I1 Cu
3 U4 4D G. de I J ).J Z - ..Z 0.1. . I a

V a. 00 0 04
6 0C4 a) a 100"v 0 P- a 2

o Xc 1.. CL a a Cn aV.42 IL a a a ccccccccc I I C

U .- a a - -C. 4



00 2 *p

u0 
S

.0 CI -C ag 1t :* : v- I L
v SO w L LL 01 V 0

o~ 0
- a a 1. a -

*~ COL C OS )

Ue .00 Va. (
-~I u S2 I

U - i L. 10 <:aa 0 at aa.. V -Ci .- *

U) ': C ac I
2 q 04 0 so I a 0

*41 I ~ Ia. IL .a-.. m
10 m 0 U I CL 0 W. I U) C

1 CI I0 -AI CL COLU 4
I- ILU S>l If U1 14 aA 40 4)a- r4 1,- 0. 0

m- CL 0 a 1. C a
II :-a- UC 2 10 4 a a 14 Cc

P- .0 0 coo a . .-. 1 . 14I U z S 1U .I U , 102 I %2

US. S a. 04c I IL (a)4 CO 3 42 v v 0 0 L

IN 11 a ; .- x a 0014lo

m. ; i, : :0
4 I 1. 06

C I CON I ~ 14

0 U 0 %.e, I ~ %IO S%



a

20.4

U!U

c j * .2 01

11 Cc r% 40)a

I co I w

a j aa, wo I "a V La~ a .waa

a! 1 a 0 0 aa1 L. I CL a) a- 0 s. a a) 7;
to I ) to V) "a LL I 8.EI

a I- aK an 1 a it a- 2 -Is cc C;- C 0 n m a -

a~~~~~1. -1 6.-. z..
I 0 3I c 4-W0 Ie -

aZ I a U)I o-2 -
0 a I.- Lr 1 ct. a0V

(02 I V)I).
A 1~ 0 U 32 CO IL--.

U.J I -@

-@I) a L -*# I *. .0 0 a:~ ) a

M. ac 1 -0 !U.q-U)a. a c . a.-a i 0 I',- C 0. a.- a a4 0*~. 1.)a a

(4~~0 *UI)010



CLu

E a

0 L

I I o

1. 0.S.-a
U) 1 4.) a

V)~~ 00 C
E 0a 43

z 1 a 0 I Z"Q~

- 0L
C- L A

CC

L) 9- 0 0) 0
- L m LI

60 I . -20 C f

ac u bu OE

e.6r S c- 02 12 W I 00 1. 4) O

u I.4 Il .0 2 0 c * c * 0 0 .

a. 0 a 1~ a 0 c 00u
0~ c 2 2 2 L Ui aVLC c r% LO 4: 4; L CC- @ -2 I- * 0 3 *

0- *.. Wu 0 c c ~ -2I 0 bt OVJ0 *.*-'4cc] v
I2 c 0l 0 f. 1. 0 W *c N-gU

2 CL L cu 0t 0 0 0W.4
a)f*' I 4 .. ~. U .- 0 2 ~ *.0- 40 .. 2L 910-4Z % 1 C

-~~~~~ w 22A .. @ O ~ 2'. I-Sc.
0 : c~.1 I~ i.~

292C--'~ I C 5.C 4

.- C '12 0q I CU C Sl A66 . - C0Z -U -



7

I cc

*i U UI I

C 9 ILC 00 3 04) 1

0 3 0 0 w~ 4
0j .1 4) K ~ -

06 - L
C 4) 0 a V;0

3 "IC 06 )-o AVI

41 LI0 3 - I

0) 0. C a .
C A C- x ~ - A 0

1 4C3 C- 0.U L

4 L 0A . - 4 %- -U . 0

0 sm u m LOC U S4.
2 0 ^CS 0 L ) 0. x) U

CL* SC 4)4 a, 1 00 u 0. -00.
U CSL 3-7= . 4) U U0 I C I

@0 '- A. 0 L L 40 0 '
CIO4 LO 5 )u 0 0. - 50 0 L *4 V. . - L I .US4. 0 c 0, dcZ I. U " U .C VL U- - ..
"A0 3. L Wa AC SZ -. UC-lk ~I

LL)A0 U -10 0 0o S C. USL 3C
4)0 5- c L-. S . )'-U 0.0 IL U -2 I I .3E))L 0.U 0 C 41.. L C1 L0 ac C ~0 .! t- E--2C0- @00 0 C ~' L I L

oL0C 0. #j~ U 3143 AU 00 1 6 0.. I -p
14 I3 o .. 4- 0.- C ac 4.- 0 U- 0) ) LE

AOL3 04) - 6. LL w A CU3 5C 1 0AII.J C L. *S 0 4)
V^~ a~ Ge C L -C . I I S

0 3 AZ. 41 0- LAl0 . 1 1
CU- U- L~4 4V 133 LL- a, : .xN.20a.S 0 - 0 0 t 4 C L- I

0 0 0LL .) 04 i 3 co a, L I 1 40
7 C 4 ) 4A -' CI U U -- I I z

-. Q 0. 06 mS 06 I
0.3 L (a 0 v IL -I Ul 41- % . U U

U-IqL0 -41 4C (4ILN 4) C0 1 C I.- L)C U 0.K NR41 WE

0S 0 14 CacC- E SIlI Z
vw-SC I I0 LI O m. s-Lf La 2414

V CL U CL k-I- *0

LIG.L~a.a LI . -. .-. AJ77



hm Mw ljw Wwmn M

C V)

I vI

0 & .. 0 -I-z I

UO ~ ~ ~ I " ^2C
L C LI L0L

3a ~4) L I c . LC 49

c I c 0 - -

0- 6 - 7 ) 1-00(
0 4o)1 w 1 - I 1. V siW ) 0V

1 c Ix~ 3 0. 1 p .^ - j L-
I 0 ~l 0

14 IA a CI " (t 0
I0 21 2" 'C La.i -N-a0

o 0 *. -' 3 a *. 0. a ) "
L oL I VL af I i01- a u 0 a -09 4 c

4 W -0MEW
ujLw I I ;w .

bt 0 -V :-: a. *C Ca.a. 4" ki I @.#
-. w m 0.4 L- 'L -J

.- I -j 60 CL u% 0 CL Ca. *Z '



Ij 0
u m

>. 0.CL02 4

0.S e C 4.)
W C 0 Is 0 x

14 .0

I L,
L a CL:P II. VI L c 1

7; a . I .

ma 2

CL C 10. 14 I
C 14 OSC u v 1aU.Wza 4)34LC 9 #A u -I.

LO " O
C~~~~~I CO I :: .. : : *** 1*.:: '

C 40 ae >f 0.6 ) nI
.. ? C

N~j~ j z I >- 2 0. 0.2~i 6ZI 0

.C4 l~ 2 12, 13 1IC : 2 AW
y4O~C a a4 L~ Q* L

U : 0
*1 -., ,-

W). VS U V) 0 W

4L C A. . A.IL 10. L a.CL C La - O



I -L

a 2

a -a

c L
I .; - 0e -

6 a c Ac

I 2 I C -4 7; <1
0 0 a 0 .1 3 0 .14

) I 3 N .
)b z--rI I L CL

C c 02 9L IL I -LUI I C
CLi L o.. U.

CL ILI.U a '- .0

:t -7- 0L (7OL

* 4. a U a

Cfl 9L L

%,i %



* CC

0 U a .,
1 0-

* 2 3- I2 0ACL I I A

I 4)6 U. , I -6

L a6 U) "a I
* z. -

*0 -% I0 %I 4)
I 00I -: I x

I A 1.
I~ a 5 l.U 1. 1VI I 0. .0+. a. . 4 I U) w+

40 .If4 UL I Ij I
42 2. 0. u-q N

. 04. 3 0)4 41

*~ c + i 6 ''II 4

a 2£l. a. v) 0 0) I 1 0 0 u 0A C
aa 40<.. -., : -I 4) 0

I c 0 4) '. -0 I 0 3 LOI % 2l .2 1 * 4) u. U) 1 -0

Vo L- 0 0. a 0" 42 O. I4 ItI~~ 6.- L X a6aIU I 6L

O. 0 0NL 0 C am a c .a a LW60 x 'U Cg ;a L) .- I0 .00 )
I L a c a 4). + z .- 0 0 (a 11. I

UL C) 1 0 4I- IA - N

a 0 vLL0 C. I a 0. 4) L
I C x 1 A L 4) Ce-I0 1.4 1J 1 -. Cat -z 6 C. 1s I - 0 I 0 -* C 0 L'O *Uj 06-O

C' - 0ei- a n. IL IL LCC IL C. e U- I 4 U2 L



So

2 -

LS0-

L 02 c a.

LL so-. 0 0 0 .

L 6 - L .0 .0. C0

4 00 .11D W L

gg0 u

4 KU c 0 X- 0 L
- - - 1* 24) 4)0

4) *, I c a u . * .

U * L ,- 0 0 c
x 0 Lo.46-* * 0 *

7 - 4p .. * .. 4) a

24 c f .

IU :) ' S Z L.0S'-0.
C. C 5 0 - .4 I .o

0. 0. U% 0 )a
2-- 0 40 Cc L LU L 5 0 CL.

It 0 I (A 0.0
40 c** oa L -- .00 ' t- -



AL

*u c

a .-. a

C 0U A

o a . * )I-c
x L 0 ta -1. .

c U)i 43
- - a N 0 -1 *

41L e-. K
a 0 a .- 11 .M

C~~~ I 0 414
41 0a V-. )'~ V;

It I'00 0 .C514 a. o-
43. 41 a. L. 0

L mt .0 1. 1-0 41.t25 04 c 0
04 a, C _ 411-*o. I-.-. A

v 41 a &W . "4 06.J- 0 _7zn Io X4 4)0406206 2 L.
_ 0a C w 5I-0" Nv L 0WO"*- K*I L a. .2* U LO. a " 4

L.a0L i CLN ..0 CL CL5~ > -)u- a -(L. LIVLc a# A a 0O 4,P- a

_~ a 0 0 6-0*U N C. -a. a ) IL a U U- a 46 .2 PCI -- f41 0R a1 .- 0 0 S0-i -. CL I-. IL Uj -. C -Sus AR
41 N U I1L0* ~ .. 2 ~ ~ Z-Z



Iw c

I SR

C

A u

-C-

a 0C

I -J

in A j L
I5 0

.01 UO ac .01
-9-'~ LL .S~S I

N. Q x A R.7

02 v U 43 V 4 0- - a a aa
'L.0 5- oo 1T S -3- L CL ac v .L 0 A .
4LIL2 L L L iI C LI x I L

CL- Uw oo

SA A



.0.

0

c

*i .0 -.

A0

.01

c c
0 1

o0 C a
L 1~ A. cc

C IL -O . c W.I4 0 0 , .a I

0- *i a C-a.8

*IL IL.

2e VO %14
* WI 0. -j a0. .001~ .o2

- u u.- 4. * *i7

U~- IO - *~ U A- Im



2 -Z

z 0 u

S I

I4 0 I1 .

ac al 0.5-

IK It C

aI. L. a

cc S
S0

I~~ ~ A i 52

-a S I I i

a I 3 C 3 O
c j.oI I 9 ) 5 C

C 5 ICWI4
II L I* C16 .n 3 < . a

&&. I . 0.4

v S a U 4)0

-(p * i -u V



C1

a4 0-

cot"
CL

CL

L IL
S -e



2 ac
I 0

* .uc
* I -.I Q6

* S0.
I 0

to eel t
* a U 2

L I 04

a. v
4L V 4) S N

L ; I -

L : a 0 V. a C c
.u~~ (a (A ~lI

I. *u 0 c '
2 .I 0 4-L U )

2 I U4 SI

> .;Ob C4 a 1

a CL

N (4 11- 
0. a

9Lz 14 44 44 I I

000jlm l 3% Q %* 9 0

~~~~~ je '., o.' -F If? or.* _ % A .~, y % ~ j~ e. %dV- I? % J% % ",______F



1.

I 
U *

0 I

I 43
I I

I IILI
-. 0

I T7
a. 02

.3 0
V 0 I CL

0 -0 0

c 3 I 

I Lx 43 4 1

a a .2 
1. 0 OL CL. I EC 0 2

0 IL 4-1 COL1 0
o c4 0 ) f I uc a-x a w I x S0

L 40 I U) 4c 0404 0 0 I 4
Ij 2. 93 3 I 0 CIL ZJ U .4I g

I-L C2 W- v
J j a .4 * , .

oo W-L CL Ca ,,I0 L

C -' W" C 

L. 
0 .ii- 

- * K

c . w a I2 0I- . I



Jd

0I

LO5

* -0

I 16
AsI

L Ir -

IO 9- 10

u- g 0 0
0 42 1- LIt-C

L . I "a xIf(

*i l cc 0 16

40 0 C. I

0 U.0 6 L I

0 s o -0 -0 "a 1
4) -= 0 0
c 80 U L S
- 'i 0 - 0

zo o 1 WL I- I V) L

V (x L- I I U v do L 00 I; L C
1 06 .o, 4

I mt 0 0 0 10J
0 0 L- .a - C

4)AL6. L6 L 1 .- C ; 6
4J CL CL CL



zi

00

0 .-

.0 -C

.0 06-

V -C. Vs - . . I
C I CL-4 :c

I OF

0 2

VA CU

I 0 00
CL ~ ~ ~ I 2U t I L .CIt IL v . a e-W

L L) 0L L 0L. L
IL I6 -4aI LILC a&a9.C lW-o



-j.

0
V c

w 0

3 0*0

F. * a*
C I w n

c Ij

co C

43,. 
0

*0 a., al3
0 I Llo *.C i I 'o 11 Z

4) 2- -, a i -A C
.c 0- L

2 6V 0~- "a I ,
a c 0 W. ,* I .c C

.U 00 I1 41
0 A U I1 0L ~C V) L L L) L L0 I.-a :3 L CL I CR CL C.* XWe

C (. 01 U Cj

O * LO .0 11
u CL)... a * ~



41..

I~ ~ c-L$

0 -

CL U L
II V~

I0 e 4L

cc £ 0£I
.- .- C at

I 44) 00 1c

2 -1

>. 1. 1. I0 L

I I6 v. I 45 1. V, c
41 0 Q

c c I V
s c L aa: IL .- *L

U a , a; t.
0

* L U41 ot.



J fl .- ffl flU Wr1 f n - 7 1 2 fl lS r~r w W ns s.L

I 0
I 0

f- 01

*c a

I 0 0 >0 2 C
iI 'a -0 "a C4... a.

I. a w a 0.
I2 A U. .I 00

0 0

Ii, C *4 1jo0.4 *i

c. a~ .. .. .. ..

I o

V: :*
- c .C I - -

z 0 14 I -1 ). G G 1@ .. 12 a' a aAc I C U )~J.0 U)Z U) 0 a
a. W,: I i i *z

L 06 OC I )C C 1 &0

a&~~~~~ 11 LU 1 a" a 64a 3I- 04a - .u a I
to WISISSSSIS.l D% u **

d4 P. 0 )- Z U (z14 4 S2In

W.4 I ,



0 V

I SL 4) c

c IL L C C 1
I . 0 U

u ~ 0 0

a ~ ~ c- 6 .

I 0 u -

a 2 0 .

I.oo a6 a

a a 0 0It

I C 4 ) cc 6. U
C u c 0a "a - C a 0

a 0 6- L

'a a
a~ 0 *

a 4) 1. 4)2 0.
.00 4 IN NI C Oa Ij 9

lu; 3. I c

IS c a c 3 2. ;p 4) 40aW
IL c .v 1 4) 01)

0~~0 " 2. 2. -6 *0-
L0 0 'C CO -LA , a C 0
I- L al Au 3 -6 ')) 2 a 0 .

& I V - 0 .- U 2 C4L
IL Ld- m co w f I

La a It 0 L. .2L C
01 14 4)4

UJ 9L I.- Cs@ La L.- . aI) KA "a~)6 1 1 1 a Cc -

ca a ) - .C 0 C
6.4~0 U 04);;j

IC, -uI a

CI0 LC 9-w0tI j



I -

V 0

__ 6 0
+ V I I

2 2 43 C

1. 0

43 a C' U0 Ir i i +3 4. -1. 0 1 0

.0 21 I P- a

IL 0I - 0 .
.a -0 W- 4

-0 LM Us. IA j--u 0 u I ~ 0 r
IL 4L C- Cl.-1 LLI 9 I

II a.i

* I - 0- .
CL S L - . .1 o 14 ol l

f ~ - U * 1 r



ON

.0 0.

I IIr

S .

V

: L

+. 406

I Or2o

U I as 0

CL OC aI m
*0 4)0 a ., 2"

gr q- m c v c

6U -U C.. I

Ula -C ' 0 -o
C L 0.

Ij 0 0)A

L. H L L
- CI *R 4)I L& LC

4) L)o -_CU



.C~

.CS

I g

N 0
c . I

CLI

.C 0 00r

0 it'. .2 C
C4 C IU "

L *0 = 0 1 -
t vZ 3' UL _; -'t

Io *4. a a U 4.a
b0 A t) V 0 * z U

'L0 1 -;; 4) C c cr

I0 at L. 0 a -%j

*l Cs I ~ - 0r 0 0

4) a a- v N%o t 0 a "'b t ,

3 0 - I .L CL ci a
N LAS Il 0- .L 1- 3 1 0a

6)3 & L 4L 4L u Z 0.

ow ow 31 .o o' '0 -Wa

U-N~- '.0 .6 A I I . 4)N



56-

-0 V

v I c

or I
. ItN IN

*v X
'V 3-I

. 0 4 - 0 4 0 - I
6.j v- Z LI 1

.:1- C aa 0
U. -2, 1I

CI-. S 6

0 0

v- . I a

CL.- a, '

se I- L

-- .- I 9-I -6 1- 1 1 , 4L-

IL .0 IN IL II IL 4 16I I

.e4 ao o- -o o.If~

* L % I.44-



4..

*o a *i

0 0

a C 0

C C

0; 1

* 43I L0

C Z *..C& -
* NUI 0 U I.E-

L 6 0 - -0 -
it v) 43c0 I 1.- .0

-- ? s zC I u~ 4),1. -n
?. 10 A B. 01 uL =C

* 6- I 2 x 0 (Z
* L Iwoi c 4) 5-

NXIo a - > 0

0 0- %C I C .0 L 0-
AM SA U IA 1 -1 4) U

N t ,S I3 u- 1 . 4 - 5cc .0- *; ; N N A 4 0

* A -. , L. L 16 L. -0 I -

45 ILL



a. N'

- I4

I.C a. II

-o I
I c I I

A - - la eisa'1
b* 3 2 IV %-' LI a, I

*,% *Z 4 I0 In 
1co a *~ of If

a~g de -.1 B lla

A5 I I

VW v~ US) I

*0 " A 0

ILJ- I -~ b- m ILIJCUCA.

-**- -I'IS



41D 0

V Cob

0 w

.01 Co

a. 6
'a C

- S-I

a 30. LS

o C s

ac >0S 004 6 t

Co A C A 30

'C IL 4.C

00 0

It c 9 .,. ~ I W. 

- S." I - c 3L . 1 1. C C 0I0c

>0 I - I V

WC 06 L & .- 3 1 M
9L- 9L IL 9L IL w St Ia Lt L v zA

'Cu



obrvqalsgrjw PRY -W -w er% wn-,.-.Rt ml m A W- mr mi

4..

0 4..'

I- x .4 x

dc cc

C* 9. C

'4~C Cc 1- S1 0

I- -. 3- - U4 I

U It .

2i 0 i 2 C4 U
aSc ac 0 60 I

*0 0
o I L OIL St

41I 0 C

I C1C cc"V

co W -r 1I N-0
a, C 0-4

10 2 2at
1 4" T . -. N-

0 Uqo cr c I 0c 2 ~
= a* 0 U "a : 0 0 __1. 0 u

* -l .4 a * U, I %-A
IN r y IL Ir cc x C ) CV-

0 L "0 Ao 6
Z -r a' a -6 a c 03

-r M I. COI .
*~~~C a -IU LICU

I~4 i a6 42 a'4 c . -I*
I- A I - 01 - 3caU I -) .4

1 0 . 2 .0 1 3 Im 6- cc4 0 W.4 0

I.-- I a"I .a4 *0co.
*O I a -6- (n WC I fl

4.) 1 a )-2 L 4
0 a, a' I. X CL0 9I I- CL 7;-X

I-- - L u w w 00I ug L (

-~~ 0- 0n 540 0- .I
Sce U 4 .. S A ~ IL CU6-40 (1W

~e a a' .a'~ I 0 4) U a' (f
* P-MSI * L



I'T rluJardwwrwhJ. wflr.ww pPU Wwm pd-r~w P WwF .,'.si f MJ PUT irm it-. Wy W..rw Sr y... W K M-. A F MW U-i Fi 79 -TUwjNv~

"aa

f 4.

OC z 0 x xx 3

I 0

.03.

I; 00 .C 04a Cow o

* I-

0 .1
Va o . iC

CL I3 g 0 '..

L -. S. N. 4.3 .M L. L -

IL Co &aLU0 LI LU C L( LMa(*; LL .W o.. .* 4



- Un * r M214 rrgrj y wv j YJW? rJ r a r W ,e- ur WY' U7tW~W'9~ W"W~ WY. 5 U~ 5 W S

p

'P-

tag

P..

C

S

C

a'..

A

a.

yj

W-
'V

- 'N

0

0

A
6

C*
.5

I,
C
14 -

I 4
-V.. '

~ % '- a.-' * -



4

I. 6

00
L C L

c 1, 0 2
0 0 6 C

c a .
4 0 0. C

41 cf a Pis-..
*~~ I 6

u c 42 L

L 4) C 6 0-1 L
o go 2C 00 I- I. 4-4
-- ~~ ~~ 0 0 0 U 63. 43 u) 40. C! 4) Ie C

L SI)4 2 I. 3 L.%. !!) CL CL 0k 2 4) 1u I E a a 3,- I
6- *j IO u6 0o 0o' 0 0 6O e(
0 I C 

(A4 P-

I 4) 0 0o - I L- 0 On
3 a. L. U0 0 62Z

C I 6 I 2 v * 4
C0 > .- I. Ia a2

6- 6 _I 3 )~ 3 0 16

a6 06 t-06 06 >O 0

I. 6 0. 6 c 0
- L C 1 0-60 0002 C 6

C~0 I a a - 0 46I
0. 0. a 0) 0 4) 06 C CO0* ~ ~ 2 *3 u Z).......................- a

~ C --.. I ... ... .... ... ... .... ... ... .C -U 210



I IU

0

I ~ ~ w.4

I C- 0
rI 00 L

- '0 C

2 I LO
w; -0 1 40 0

I 0 .1o le I4 *01L
c c C.. CoxI~4

-~l 0 ' -. CIa 4
9o 4) 06 - ; . o6.-E 1 0 aI

c a Go P. *2 a 1) C0 .
IL a 0 1U 11 L1 30 0.- *- 64

I. Vt 2 2 If II- a "a4 4
U; c C 2 I u~ P40 U

2 z 2 11 * A 7 - I C q 4 0 0 ,- "a 4)CI~4 I) 0i0nU%.4
L. , -,!. 2  4*r * 4); o 0 -- Sx V) 0
2 I *4)0L L 2 ql- 1 C. V -

a q. I. vU 0 4 0 %t
0 - bts 0L 0t L LW~o %. I 2 C *. .0 I U

U * J O 3LU L J .c0 V A 0 V t9 0 - 4 4 1 % . w.
*U~~~ 41~ 411 U 0C 4 0 U 4

u 1.U 0 0 II46 1 00 :- * u 5 u C.. U
a. W *.. '11 910w1 4. u 4. 3
-m E -%. - c 0 ic * a-
A-! 0 0 0

0 0ill
* 0 C-L o - CL



Pr.

&V.

*

0

o
-1- a

0 a

Ul II

o a .



I 6I

LOI cI VI c

06 E a
c 0 x

A I 2 A 41 I 9 L

W V C a - SO

In0 .01. . 0 .)1

IL 444 c ~
6.~~ 0 0

H) I aI
lz ac I ) 6

) v I CO l~ ac 6
2 C 1 -0 2 I7 4

A t 6 a6I

L). I c

0 to I. I;a-.
0c I 16 0 6 4cl

W*A1 1 a I a I cc c
a I C 300g CEL- 20

I. m % I (AC0 0-6 A2 ZZ Z3 Be 5
* L 2 4 *C Ic c j j c A) a44U~. Z 6 ix)

.- I I 2 . I f U 2 -
I a 4) )14 1I 1
I4 6.....................*4

to Z 4)0 aIL f1ILA0
044Not,



U

ueV I

I~ L *I

I u0

IA - %

I0 0
ICuC I a

I ~0
* 4) +

c CS Nu

a. C x it

Ie S N4 4 qx a

Iz 0 P, 0'00 M- a
I OL c 0. .1 u a.I

w* 1 - - L 0 4I.- 4s a a54) -C
U] C 1. C A )

C2 WS : 4.) a 0
02 * ; - - 0 C. a

C L - 0 a 0U % I 4) Q 0
o I ~ 4D .0.I

~~ S0 .. IN Is U2~ S wND D*

520 0 I -0 .-0

* * - I *L C, C1 5- V52. Q. LoU*%U 02 2 0 ) ~ -I * oU'

2aC' L ULO - IS a. -0 41 L a) C.-

C C ~ C I 2 6 4 6 0 U W

ZLLz 0Z6,:f ,



*V I

I C4 1 0I.0 1 1 0
x I AC 430

- -- I 0 3I
* I c 0

3 - -I )

c r N Cd I 0 () O
34 1 I -; IV flu

I A) 1. 00

V. .4 z.4

INIMU4 I U C.

.- .- 1 ) 0

-C a~-4 I 04 0 1
I IL m- 1 0 x1

U) 1 U 4 "a) 6
V C I 14 -0 1 -0" 0 1 U c7

v UI I aC 0
* K I c

14 -C 0 0 I *
U) 14 S d I 4) u .0 I

0 ~ ~ 4) m U Z I 66
U ) I CC

N~~~3 0 3.- I0X

a + I I Lo I C--'

II----3- L% * )
a Ux cc) Z , i -- 0 0. C 

* a N4 - CPC a 4.9 * . )L

Z- Go 4KZ 0. IS 101%)
CI 04~U .o I- . CL u 4 .. U)W bt o

V) AI 0. C(LK Aa m o.-C'
I*I L. C (14) li S !(

* .-. O L0-~ U) 4).-, .. L0L.J - t. 0.*~- * *-~ a A CL CU AOBZ
a v. IL LG. IL Z CL 1- o...j



I a6

S It

3.6

A IL
S I--

0 or

C 0 01. . 0
C- b I aI

I o- I so .U
C '- 1- M A a "a

so 413 go a S L 6 ,
6- , , a ... . bo

I- c 44 1 I 61 u 6 4 00C

-' CL - II I, *L L
-%. a, a cC.

9LI Si _3% U- Dx L

43 a 04 C16 a 0
42 a6 u 0 *oG6C0 w 

-C A CLL 
A-! cc S% 1 'c0 LL

z~~ 0.V S 01:3 .lo O4 V o0O
a aI " 0 6 **

cc Uz 0 4 % , aL
*a I* CL I*L II 13. -C - I 0 *-1 PCL 0 I S-I W~ : U3 I0 li .

Ie -C 41 . 4L -C L*i0

Ic COL oo . o - 0



.. 9.

060

9L II..

a.

-' ~ - -Ci 0 --

0 0ZZ.,00aI
X!I 0! .00

I. %.'% C . a
- . I .0 a 

43~ UU o ..

*c : i -1

3%. -I I - at C= C4C

a-, 0 C 14 3 4 .

a-. L OIiw, A0 - C 4La-

14 v; .1o -

a, it 0*'% ~ ~ 'I 9L. I0 'L--434
A.0 

L 
-o 

-,- 0-L IL 04 C 0M .. 41

0 a~ c -6
LS L. 

uL L 17t!. rv I " "~CS 0 CM 
a" a. c400.a. -- si- ' 3'J C 4

CI CL CIIL a CL C

, oor 2 -i,.-. 0



-C-

.00

I * C

! (0 j -0.

-C tzC S *0

c CL
0*-0

C C U* av

I~C - I
I C, 10

CL 2

20b
I~~4 .. U

I3 to1 0 C-

L L 04 5 0o a,IL .0'- C4 C M#

I ~ ~~ 3 CL .-. 0 * -

uM x c 0.0 Z" N6 "- bt a~ C

LZ. .04JS .. IL0 c LI -
IL L. a. LM -' 4C1- '1 6

OR 4L 9L. 21, b- 0&- 94L- -I I -- I
* -L. tj 0 44 0s 0

-~~- IJ 0 L L* *%* .-

j Cb b b t I L .CJI



I a6

9L 9-

z N%

c .4

+ -- -

A0.
I I C4

I~ 0.0

j0 0
I .iI

0 %-A's.

Z 00. 14 * * c,
I 1P4 Cl 2-0~ j

'I CL 2 -N .s

.U 0) 4ax 2-%R

x C Cl ., 0

wu lIh0 L CL *) l- -i I ) Z (
I2 1"4 LN s U -0. - (

CL 1 U1c L U - :
1- UU i*w0 -CL v c I L 0

CLI 9 LILi I -j Il 4) NL It4)- j - A
.0 v *UL N-2 .11 U -



KOO'

*a

v

0 E
c 0

46.

AL 2

x L.

* CCL

u C6 *6 0 :
a II v- a I

*1 b .u1 u .0
I 9L 0.M-4 ;-

-, 4) AI
CL ixI.r- 0 x

L.- 1 0 03 CL Vt -4 V .

IL -0 A 0-- U a uUV x L 6a n L Xq. a . L. u 0% a a. x04 * 1- a a CL 4
01 0 .0 V, 1 U0 j-

I L 1-2L 9L *cO ARLUL .L 0vt a. -. CLC UJW CLC I L ILI a . .= L
9L 20 .00' ),- 00



IN

a .u
c c

C c

- -n

U 0 0

c C5 CO

3 CL 0
0 0 .C

C C4

u u 0I- -1 C.

Q I IL 0 L ORQ 2 00
I~~ -v - a

*C C
I :. 0 -c CLa2 2 M W -

C-S CL C iX< ~ 1. 4)5 t- c 3o =c 3 0' u ~ c

100

I L 4 0 L LM L 2IA 0-b.Z- C- -1 C L C LC L u
%. u 8.514 2



UVI Cw-,K.V- -- -. r M

4..

u cq

6A IL I

I~ 000

I. MS 6
6 - 6

6I -1 6 0. 1 C It60

I" LL IuI4) C
de I ixG A L 4) I U .

I q6 6 CL X4)xa 2

z CL 0- U

I 0 11 6 6

IL IL 0u 0. 6 .
0 -v Q 6 6.-

A I. u a 0 I.
0 S I9 1 A0V

0 4) 96 Lii 6 0

A. IL VL 9 - L~ A I I.- - L)
C6 a ki . 0. Ne# I

*o .1 ti LL.



0-4w

a

40
L (fl
62 z

43 CA.

" _;

0

434

-0t -

ul ~ I 40 0-j-

a -4

4A-
4L Cc



Matrix Tools

* Matrix Exponential
* Augment Matrices
* Join Matrices
* Block Diagonalize Matrix
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PMiscellaneous Routines• Power Series Expansion

* Reduce subexpressions
* Get external filesDefine properties to symbols

Generate FORTRAN CODE
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B Fortan code for spectral factorization and optimal
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Fortran Code for Numerical Algorithms

9 spectral factorization by frequency sampling

e distributed gain computation by numerical quadrature

* stability/performance evaluation by frequency response testing
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